?? meeprom_g.c
字號:
}
ii = (A_UINT16) maxPiers; // to quiet compiler warnings
return(1);
}
void eeprom_to_raw_dataset_gen5(A_UINT32 devNum, EEPROM_DATA_STRUCT_GEN5 *pCalDataset, RAW_DATA_STRUCT_GEN5 *pRawDataset) {
A_UINT16 ii, jj, kk, ss;
RAW_DATA_PER_PDGAIN_GEN5 *pRawXPD;
EEPROM_DATA_PER_CHANNEL_GEN5 *pCalCh; //ptr to array of info held per channel
A_UINT16 xgain_list[MAX_NUM_PDGAINS_PER_CHANNEL];
A_UINT16 xpd_mask;
A_UINT32 numPdGainsUsed = 0;
if (pRawDataset->xpd_mask != pCalDataset->xpd_mask) {
mError(devNum, EIO,"xpd_mask values incompatible between raw and eeprom datasets\n");
exit(0);
}
xgain_list[0] = 0xDEAD;
xgain_list[1] = 0xDEAD;
xgain_list[2] = 0xDEAD;
xgain_list[3] = 0xDEAD;
kk = 0;
xpd_mask = pRawDataset->xpd_mask;
for (jj = 0; jj < MAX_NUM_PDGAINS_PER_CHANNEL; jj++) {
if (((xpd_mask >> (MAX_NUM_PDGAINS_PER_CHANNEL-jj-1)) & 1) > 0) {
if (kk >= MAX_NUM_PDGAINS_PER_CHANNEL) {
printf("A maximum of 4 pd_gains supported in eep_to_raw_data for gen5\n");
exit(0);
}
xgain_list[kk++] = (A_UINT16) (MAX_NUM_PDGAINS_PER_CHANNEL-jj-1);
}
}
numPdGainsUsed = kk;
pRawDataset->numChannels = pCalDataset->numChannels;
for (ii = 0; ii < pRawDataset->numChannels; ii++) {
pCalCh = &(pCalDataset->pDataPerChannel[ii]);
pRawDataset->pDataPerChannel[ii].channelValue = pCalCh->channelValue;
// pRawDataset->pDataPerChannel[ii].maxPower_t4 = pCalCh->maxPower_t4;
// maxPower_t4 = pRawDataset->pDataPerChannel[ii].maxPower_t4;
// numVpd has already been setup appropriately for the relevant pdGains
//printf("SNOOP: channel = %d\n", pCalCh->channelValue);
for (jj = 0; jj<numPdGainsUsed; jj++) {
ss = xgain_list[jj]; // use jj for calDataset and ss for rawDataset
pRawXPD = &(pRawDataset->pDataPerChannel[ii].pDataPerPDGain[ss]);
if (pRawXPD->numVpd < 1) {
printf("ERROR : numVpd for ch[%d] = %d, pdgain = %d[%d] should not be 0 for xpd_mask = 0x%x\n", ii,
pCalCh->channelValue, ss, jj, xpd_mask);
exit(0);
}
pRawXPD->pwr_t4[0] = (A_INT16)(4*pCalCh->pwr_I[jj]);
pRawXPD->Vpd[0] = pCalCh->Vpd_I[jj];
//printf("SNOOP: ss=%d, Vpd[0] = %d, pwr[0] = %d\n", ss, pRawXPD->Vpd[0], pRawXPD->pwr_t4[0]);
for (kk = 1; kk < pRawXPD->numVpd; kk++) {
pRawXPD->pwr_t4[kk] = (A_INT16)(pRawXPD->pwr_t4[kk-1] + 2*pCalCh->pwr_delta_t2[kk-1][jj]);
pRawXPD->Vpd[kk] = (A_UINT16)(pRawXPD->Vpd[kk-1] + pCalCh->Vpd_delta[kk-1][jj]);
//printf("SNOOP: ss=%d, Vpd[%d] = %d, pwr[%d] = %d\n", ss, kk, pRawXPD->Vpd[kk], kk, pRawXPD->pwr_t4[kk]);
} // loop over Vpds
} // loop over pd_gains
} // loop over channels
devNum = 0; //quiet warnings
}
/*
A_BOOL get_xpd_gain_and_pcdacs_for_powers
(
A_UINT32 devNum, // In
A_UINT16 channel, // In
RAW_DATA_STRUCT_GEN5 *pRawDataset, // In
A_UINT32 numXpdGain, // In
A_UINT32 xpdGainMask, // In - desired xpd_gain
A_INT16 *pPowerMin, // In/Out (2 x power)
A_INT16 *pPowerMax, // In/Out (2 x power)
A_INT16 *pPowerMid, // Out (2 x power)
A_UINT16 pXpdGainValues[], // Out
A_UINT16 pPCDACValues[] // Out
)
{
A_UINT32 ii, jj, kk;
A_INT16 minPwr_t4, maxPwr_t4, Pmin, Pmid;
A_UINT32 chan_idx_L, chan_idx_R;
A_UINT16 chan_L, chan_R;
A_INT16 pwr_table0[64];
A_INT16 pwr_table1[64];
RAW_DATA_PER_CHANNEL_GEN5 *pRawCh;
A_UINT16 pcdacs[10];
A_INT16 powers[10];
A_UINT16 numPcd;
A_INT16 powTableLXPD[2][64];
A_INT16 powTableHXPD[2][64];
A_INT16 tmpPowerTable[64];
A_UINT16 xgain_list[2];
A_UINT16 xpd_mask;
LIB_DEV_INFO *pLibDev = gLibInfo.pLibDevArray[devNum];
if (pRawDataset == NULL) {
mError(devNum, EINVAL,"NULL dataset pointer. This mode may not be supported.\n");
return(FALSE);
}
if ((xpdGainMask & pRawDataset->xpd_mask) < 1) {
mError(devNum, EINVAL,"desired xpdGainMask not supported by calibrated xpd_mask\n");
return(FALSE);
}
maxPwr_t4 = (A_INT16)(2*(*pPowerMax)); // pwr_t2 -> pwr_t4
minPwr_t4 = (A_INT16)(2*(*pPowerMin)); // pwr_t2 -> pwr_t4
xgain_list[0] = 0xDEAD;
xgain_list[1] = 0xDEAD;
kk = 0;
xpd_mask = pRawDataset->xpd_mask;
for (jj = 0; jj < MAX_NUM_PDGAINS_PER_CHANNEL; jj++) {
if (((xpd_mask >> jj) & 1) > 0) {
if (kk > 1) {
printf("A maximum of 2 xpd_gains supported in eep_to_raw_data\n");
exit(0);
}
xgain_list[kk++] = (A_UINT16) jj;
}
}
mdk_GetLowerUpperIndex(channel, &(pRawDataset->pChannels[0]), pRawDataset->numChannels, &(chan_idx_L), &(chan_idx_R));
kk = 0;
for (ii=chan_idx_L; ii<=chan_idx_R; ii++) {
pRawCh = &(pRawDataset->pDataPerChannel[ii]);
if (xgain_list[1] == 0xDEAD) {
jj = xgain_list[0];
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
memcpy(&(pcdacs[0]), &(pRawCh->pDataPerXPD[jj].pcdac[0]), numPcd*sizeof(A_UINT16));
memcpy(&(powers[0]), &(pRawCh->pDataPerXPD[jj].pwr_t4[0]), numPcd*sizeof(A_INT16));
if (!mdk_getFullPwrTable(devNum, numPcd, &(pcdacs[0]), &(powers[0]), pRawCh->maxPower_t4, &(tmpPowerTable[0]))) {
return(FALSE);
} else {
memcpy(&(powTableLXPD[kk][0]), &(tmpPowerTable[0]), 64*sizeof(A_INT16));
}
} else {
jj = xgain_list[0];
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
memcpy(&(pcdacs[0]), &(pRawCh->pDataPerXPD[jj].pcdac[0]), numPcd*sizeof(A_UINT16));
memcpy(&(powers[0]), &(pRawCh->pDataPerXPD[jj].pwr_t4[0]), numPcd*sizeof(A_INT16));
if (!mdk_getFullPwrTable(devNum, numPcd, &(pcdacs[0]), &(powers[0]), pRawCh->maxPower_t4, &(tmpPowerTable[0]))) {
return(FALSE);
} else {
memcpy(&(powTableLXPD[kk][0]), &(tmpPowerTable[0]), 64*sizeof(A_INT16));
}
jj = xgain_list[1];
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
memcpy(&(pcdacs[0]), &(pRawCh->pDataPerXPD[jj].pcdac[0]), numPcd*sizeof(A_UINT16));
memcpy(&(powers[0]), &(pRawCh->pDataPerXPD[jj].pwr_t4[0]), numPcd*sizeof(A_INT16));
if (!mdk_getFullPwrTable(devNum, numPcd, &(pcdacs[0]), &(powers[0]), pRawCh->maxPower_t4, &(tmpPowerTable[0]))) {
return(FALSE);
} else {
memcpy(&(powTableHXPD[kk][0]), &(tmpPowerTable[0]), 64*sizeof(A_INT16));
}
}
kk++;
}
chan_L = pRawDataset->pChannels[chan_idx_L];
chan_R = pRawDataset->pChannels[chan_idx_R];
kk = chan_idx_R - chan_idx_L;
pLibDev->maxLinPwrx4 = mdk_GetInterpolatedValue_Signed16(channel, chan_L, chan_R,
pRawDataset->pDataPerChannel[chan_idx_L].pDataPerXPD[0].pwr_t4[2],
pRawDataset->pDataPerChannel[chan_idx_R].pDataPerXPD[0].pwr_t4[2]);
if (xgain_list[1] == 0xDEAD) {
for (jj=0; jj<64; jj++) {
pwr_table0[jj] = mdk_GetInterpolatedValue_Signed16(channel, chan_L, chan_R, powTableLXPD[0][jj], powTableLXPD[kk][jj]);
}
Pmin = getPminAndPcdacTableFromPowerTable(&(pwr_table0[0]), pPCDACValues);
*pPowerMin = (A_INT16) (Pmin / 2);
*pPowerMid = (A_INT16) (pwr_table0[63] / 2);
*pPowerMax = (A_INT16) (pwr_table0[63] / 2);
pXpdGainValues[0] = xgain_list[0];
pXpdGainValues[1] = pXpdGainValues[0];
} else {
for (jj=0; jj<64; jj++) {
pwr_table0[jj] = mdk_GetInterpolatedValue_Signed16(channel, chan_L, chan_R, powTableLXPD[0][jj], powTableLXPD[kk][jj]);
pwr_table1[jj] = mdk_GetInterpolatedValue_Signed16(channel, chan_L, chan_R, powTableHXPD[0][jj], powTableHXPD[kk][jj]);
}
if (numXpdGain == 2) {
Pmin = getPminAndPcdacTableFromTwoPowerTables(&(pwr_table0[0]), &(pwr_table1[0]), pPCDACValues, &Pmid);
*pPowerMin = (A_INT16) (Pmin / 2);
*pPowerMid = (A_INT16) (Pmid / 2);
*pPowerMax = (A_INT16) (pwr_table0[63] / 2);
pXpdGainValues[0] = xgain_list[0];
pXpdGainValues[1] = xgain_list[1];
} else {
if ( (minPwr_t4 <= pwr_table1[63]) && (maxPwr_t4 <= pwr_table1[63])) {
Pmin = getPminAndPcdacTableFromPowerTable(&(pwr_table1[0]), pPCDACValues);
pXpdGainValues[0] = xgain_list[1];
pXpdGainValues[1] = pXpdGainValues[0];
*pPowerMin = (A_INT16) (Pmin / 2);
*pPowerMid = (A_INT16) (pwr_table1[63] / 2);
*pPowerMax = (A_INT16) (pwr_table1[63] / 2);
} else {
Pmin = getPminAndPcdacTableFromPowerTable(&(pwr_table0[0]), pPCDACValues);
pXpdGainValues[0] = xgain_list[0];
pXpdGainValues[1] = xgain_list[0];
*pPowerMin = (A_INT16) (Pmin/2);
*pPowerMid = (A_INT16) (pwr_table0[63] / 2);
*pPowerMax = (A_INT16) (pwr_table0[63] / 2);
}
}
}
devNum = 0; //quiet compiler
return(TRUE);
}
*/
/*
A_INT16 mdk_GetInterpolatedValue_Signed16(A_UINT16 target, A_UINT16 srcLeft, A_UINT16 srcRight,
A_INT16 targetLeft, A_INT16 targetRight)
{
A_INT16 returnValue;
if (srcRight != srcLeft) {
returnValue = (A_INT16)( ( (target - srcLeft)*targetRight + (srcRight - target)*targetLeft)/(srcRight - srcLeft));
}
else {
returnValue = targetLeft;
}
return (returnValue);
}
*/
// returns indices surrounding the value in sorted integer lists. used for channel and pcdac lists
void mdk_GetLowerUpperIndex_Signed16 (
A_INT16 value, //value to search for
A_INT16 *pList, //ptr to the list to search
A_UINT16 listSize, //number of entries in list
A_UINT32 *pLowerValue, //return the lower index
A_UINT32 *pUpperValue //return the upper index
)
{
A_UINT16 i;
A_INT16 listEndValue = *(pList + listSize - 1);
A_INT16 target = value ;
//see if value is lower than the first value in the list
//if so return first value
if (target <= (*pList)) {
*pLowerValue = 0;
*pUpperValue = 0;
return;
}
//see if value is greater than last value in list
//if so return last value
if (target >= listEndValue) {
*pLowerValue = listSize - 1;
*pUpperValue = listSize - 1;
return;
}
//look for value being near or between 2 values in list
for(i = 0; i < listSize; i++) {
//if value is close to the current value of the list
//then target is not between values, it is one of the values
if (pList[i] == target) {
*pLowerValue = i;
*pUpperValue = i;
return;
}
//look for value being between current value and next value
//if so return these 2 values
if (target < pList[i + 1]) {
*pLowerValue = i;
*pUpperValue = i + 1;
return;
}
}
}
A_BOOL initialize_datasets_gen5(A_UINT32 devNum, EEPROM_DATA_STRUCT_GEN5 *pCalDataset_gen5[], RAW_DATA_STRUCT_GEN5 *pRawDataset_gen5[]) {
A_UINT32 words[400];
A_UINT16 start_offset = 0x150; // for 16k eeprom (0x2BE - 0x150) = 367. 0x2BE is the max possible end of CTL section.
//add 10 to ignore dummy data written for driver
A_UINT32 maxPiers;
LIB_DEV_INFO *pLibDev = gLibInfo.pLibDevArray[devNum];
A_UINT16 numEEPROMWordsPerChannel;
A_UINT16 wordsForPdgains[] = {4,6,9,12}; // index is 1 less than numPdgains
//printf("SNOOP: initialize_datasets_gen5 : entered [%d, %d]\n", MODE_11B, MODE_11G);
// read only upto the end of CTL section
// 0x2BE is the max possible end of CTL section.
// for 16k eeprom (0x2BE - 0x150) = 367.
start_offset = pLibDev->p16kEepHeader->calStartLocation;
eepromReadBlock(devNum, (start_offset + pLibDev->eepromStartLoc), 367, words);
// setup datasets for mode_11b first
start_offset = 0;
if (pLibDev->p16kEepHeader->Amode) {
maxPiers = NUM_11A_EEPROM_CHANNELS;
pCalDataset_gen5[MODE_11A] = (EEPROM_DATA_STRUCT_GEN5 *)malloc(sizeof(EEPROM_DATA_STRUCT_GEN5));
if(NULL == pCalDataset_gen5[MODE_11A]) {
mError(devNum, ENOMEM, "unable to allocate 11a gen5 cal data struct\n");
return(0);
}
pCalDataset_gen5[MODE_11A]->xpd_mask = pLibDev->p16kEepHeader->info11a.xgain;
if (!read_Cal_Dataset_From_EEPROM_gen5(devNum, pCalDataset_gen5[MODE_11A], start_offset, maxPiers, &(words[0]), MODE_11A ) ) {
mError(devNum, EIO,"unable to allocate cal dataset (gen5) for mode 11a\n");
return(0);
}
pRawDataset_gen5[MODE_11A] = (RAW_DATA_STRUCT_GEN5 *)malloc(sizeof(RAW_DATA_STRUCT_GEN5));
if(NULL == pRawDataset_gen5[MODE_11A]) {
mError(devNum, ENOMEM, "unable to allocate 11a gen5 raw data struct\n");
return(0);
}
pRawDataset_gen5[MODE_11A]->xpd_mask = pLibDev->p16kEepHeader->info11a.xgain;
setup_raw_dataset_gen5(devNum, pRawDataset_gen5[MODE_11A], pCalDataset_gen5[MODE_11A]->numChannels, pCalDataset_gen5[MODE_11A]->pChannels);
eeprom_to_raw_dataset_gen5(devNum, pCalDataset_gen5[MODE_11A], pRawDataset_gen5[MODE_11A]);
// setup datasets for mode_11b next
numEEPROMWordsPerChannel = wordsForPdgains[pCalDataset_gen5[MODE_11A]->pDataPerChannel[0].numPdGains - 1];
start_offset = (A_UINT16) (start_offset + pCalDataset_gen5[MODE_11A]->numChannels*numEEPROMWordsPerChannel + 5);
} else {
pRawDataset_gen5[MODE_11A] = NULL;
pCalDataset_gen5[MODE_11A] = NULL;
}
if (pLibDev->p16kEepHeader->Bmode) {
maxPiers = NUM_2_4_EEPROM_CHANNELS_GEN5;
pCalDataset_gen5[MODE_11B] = (EEPROM_DATA_STRUCT_GEN5 *)malloc(sizeof(EEPROM_DATA_STRUCT_GEN5));
if(NULL == pCalDataset_gen5[MODE_11B]) {
mError(devNum, ENOMEM, "unable to allocate 11b gen5 cal data struct\n");
return(0);
}
pCalDataset_gen5[MODE_11B]->xpd_mask = pLibDev->p16kEepHeader->info11b.xgain;
if (!read_Cal_Dataset_From_EEPROM_gen5(devNum, pCalDataset_gen5[MODE_11B], start_offset, maxPiers, &(words[0]), MODE_11B ) ) {
mError(devNum, EIO,"unable to allocate cal dataset (gen5) for mode 11b\n");
return(0);
}
pRawDataset_gen5[MODE_11B] = (RAW_DATA_STRUCT_GEN5 *)malloc(sizeof(RAW_DATA_STRUCT_GEN5));
if(NULL == pRawDataset_gen5[MODE_11B]) {
mError(devNum, ENOMEM, "unable to allocate 11b gen5 raw data struct\n");
return(0);
}
pRawDataset_gen5[MODE_11B]->xpd_mask = pLibDev->p16kEepHeader->info11b.xgain;
setup_raw_dataset_gen5(devNum, pRawDataset_gen5[MODE_11B], pCalDataset_gen5[MODE_11B]->numChannels, pCalDataset_gen5[MODE_11B]->pChannels);
eeprom_to_raw_dataset_gen5(devNum, pCalDataset_gen5[MODE_11B], pRawDataset_gen5[MODE_11B]);
// setup datasets for mode_11g next
numEEPROMWordsPerChannel = wordsForPdgains[pCalDataset_gen5[MODE_11B]->pDataPerChannel[0].numPdGains - 1];
start_offset = (A_UINT16) (start_offset + pCalDataset_gen5[MODE_11B]->numChannels*numEEPROMWordsPerChannel + 2);
} else {
pRawDataset_gen5[MODE_11B] = NULL;
pCalDataset_gen5[MODE_11B] = NULL;
}
if (pLibDev->p16kEepHeader->Gmode) {
maxPiers = NUM_2_4_EEPROM_CHANNELS_GEN5;
pCalDataset_gen5[MODE_11G] = (EEPROM_DATA_STRUCT_GEN5 *)malloc(sizeof(EEPROM_DATA_STRUCT_GEN5));
if(NULL == pCalDataset_gen5[MODE_11G]) {
mError(devNum, ENOMEM, "unable to allocate 11g gen5 cal data struct\n");
return(0);
}
pCalDataset_gen5[MODE_11G]->xpd_mask = pLibDev->p16kEepHeader->info11g.xgain;
if (!read_Cal_Dataset_From_EEPROM_gen5(devNum, pCalDataset_gen5[MODE_11G], start_offset, maxPiers, &(words[0]), MODE_11G ) ) {
mError(devNum, EIO,"unable to allocate cal dataset (gen5) for mode 11g\n");
return(0);
}
pRawDataset_gen5[MODE_11G] = (RAW_DATA_STRUCT_GEN5 *)malloc(sizeof(RAW_DATA_STRUCT_GEN5));
if(NULL == pRawDataset_gen5[MODE_11G]) {
mError(devNum, ENOMEM, "unable to allocate 11g gen5 raw data struct\n");
return(0);
}
pRawDataset_gen5[MODE_11G]->xpd_mask = pLibDev->p16kEepHeader->info11g.xgain;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -