亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? bspline.texi

?? math library from gnu
?? TEXI
字號:
@cindex basis splines, B-splines@cindex splines, basisThis chapter describes functions for the computation of smoothingbasis splines (B-splines). The header file @file{gsl_bspline.h}contains prototypes for the bspline functions and related declarations.@menu* Overview of B-splines::* Initializing the B-splines solver::* Constructing the knots vector::* Evaluation of B-spline basis functions::* Evaluation of B-spline basis function derivatives::* Example programs for B-splines::* References and Further Reading::@end menu@node Overview of B-splines@section Overview@cindex basis splines, overviewB-splines are commonly used as basis functions to fit smoothingcurves to large data sets. To do this, the abscissa axis isbroken up into some number of intervals, where the endpointsof each interval are called @dfn{breakpoints}. These breakpointsare then converted to @dfn{knots} by imposing various continuityand smoothness conditions at each interface. Given a nondecreasingknot vector@c{$t = \{t_0, t_1, \dots, t_{n+k-1}\}$}@math{t = @{t_0, t_1, @dots{}, t_@{n+k-1@}@}},the @math{n} basis splines of order @math{k} are defined by@tex\beforedisplay$$B_{i,1}(x) = \left\{\matrix{1, & t_i \le x < t_{i+1}\cr                            0, & else}\right.$$$$B_{i,k}(x) = \left[(x - t_i)/(t_{i+k-1} - t_i)\right] B_{i,k-1}(x) +             \left[(t_{i+k} - x)/(t_{i+k} - t_{i+1})\right] B_{i+1,k-1}(x)$$\afterdisplay@end tex@ifinfo@exampleB_(i,1)(x) = (1, t_i <= x < t_(i+1)             (0, elseB_(i,k)(x) = [(x - t_i)/(t_(i+k-1) - t_i)] B_(i,k-1)(x) + [(t_(i+k) - x)/(t_(i+k) - t_(i+1))] B_(i+1,k-1)(x)@end example@end ifinfofor @math{i = 0, @dots{}, n-1}. The common case of cubic B-splinesis given by @math{k = 4}. The above recurrence relation can beevaluated in a numerically stable way by the de Boor algorithm.If we define appropriate knots on an interval @math{[a,b]} thenthe B-spline basis functions form a complete set on that interval.Therefore we can expand a smoothing function as@tex\beforedisplay$$f(x) = \sum_{i=0}^{n-1} c_i B_{i,k}(x)$$\afterdisplay@end tex@ifinfo@examplef(x) = \sum_i c_i B_(i,k)(x)@end example@end ifinfogiven enough @math{(x_j, f(x_j))} data pairs. The @math{c_i} canbe readily obtained from a least-squares fit.@node Initializing the B-splines solver@section Initializing the B-splines solver@cindex basis splines, initializingUsing B-splines requires a gsl_bspline_workspace:@deftypefun {gsl_bspline_workspace *} gsl_bspline_alloc (const size_t @var{k}, const size_t @var{nbreak})This function allocates a workspace for computing B-splines of order@var{k}. The number of breakpoints is given by @var{nbreak}. Thisleads to @math{n = nbreak + k - 2} basis functions. Cubic B-splinesare specified by @math{k = 4}. The size of the workspace is@math{O(5k + nbreak)}.@end deftypefun@deftypefun void gsl_bspline_free (gsl_bspline_workspace * @var{w})This function frees the memory associated with the workspace @var{w}.@end deftypefunEvaluation of B-spline basis function derivatives additionally requiresa @code{gsl_bspline_deriv_workspace}:@deftypefun {gsl_bspline_deriv_workspace *} gsl_bspline_deriv_alloc (const size_t @var{k})This function allocates a workspace for computing the derivatives of aB-spline basis function of order @var{k}.  The size of the workspaceis @math{O(2k^2)}.@end deftypefun@deftypefun void gsl_bspline_deriv_free (gsl_bspline_deriv_workspace * @var{w})This function frees the memory associated with the derivativeworkspace @var{w}.@end deftypefun@node Constructing the knots vector@section Constructing the knots vector@cindex knots@deftypefun int gsl_bspline_knots (const gsl_vector * @var{breakpts}, gsl_bspline_workspace * @var{w})This function computes the knots associated with the given breakpointsand stores them internally in @code{w->knots}.@end deftypefun@deftypefun int gsl_bspline_knots_uniform (const double a, const double b, gsl_bspline_workspace * @var{w})This function assumes uniformly spaced breakpoints on @math{[a,b]}and constructs the corresponding knot vector using the previouslyspecified @var{nbreak} parameter. The knots are stored in@code{w->knots}.@end deftypefun@node Evaluation of B-spline basis functions@section Evaluation of B-splines@cindex basis splines, evaluation@deftypefun int gsl_bspline_eval (const double @var{x}, gsl_vector * @var{B}, gsl_bspline_workspace * @var{w})This function evaluates all B-spline basis functions at the position@var{x} and stores them in @var{B}, so that the @math{i}th elementof @var{B} is @math{B_i(x)}. @var{B} must be of length@math{n = nbreak + k - 2}. This value may also be obtained by calling@code{gsl_bspline_ncoeffs}.It is far more efficient to compute all of the basis functions atonce than to compute them individually, due to the nature of thedefining recurrence relation.@end deftypefun@deftypefun int gsl_bspline_eval_nonzero (const double @var{x}, gsl_vector * @var{Bk}, size_t * @var{istart}, size_t * @var{iend}, gsl_bspline_workspace * @var{w})This function evaluates all potentially nonzero B-spline basisfunctions at the position @var{x} and stores them in @var{Bk}, sothat the @math{i}th element of @var{Bk} is @math{B_(istart+i)(x)}.The last element of @var{Bk} is @math{B_(iend)(x)}.  @var{Bk} must beof length @math{k}.  Only returning nonzero basis functions allows usersto more cheaply perform tasks requiring linear combinations of the basisfunctions, e.g.  when evaluating an interpolated function.@end deftypefun@deftypefun size_t gsl_bspline_ncoeffs (gsl_bspline_workspace * @var{w})This function returns the number of B-spline coefficients given by@math{n = nbreak + k - 2}.@end deftypefun@node Evaluation of B-spline basis function derivatives@section Evaluation of B-spline derivatives@cindex basis splines, derivatives@deftypefun int gsl_bspline_deriv_eval (const double @var{x}, const size_t @var{nderiv}, gsl_matrix * @var{dB}, gsl_bspline_workspace * @var{w}, gsl_bspline_deriv_workspace * @var{dw})This function evaluates all B-spline basis function derivatives of orders@math{0} through @math{nderiv} (inclusive) at the position @var{x}and stores them in @var{dB}.  The @math{(i,j)}th element of @var{dB}is @math{d^j/dx^j B_i(x)}.  @var{dB} must be of size @math{n = nbreak +k - 2} by @math{nderiv + 1}.  The value @math{n} may also be obtainedby calling @code{gsl_bspline_ncoeffs}.  Note that function evaluationsare included as the @math{0}th order derivatives in @var{dB}.It is far more efficient to compute all of the basis functions derivativesat once than to compute them individually, due to the nature of thedefining recurrence relation.@end deftypefun@deftypefun int gsl_bspline_deriv_eval_nonzero (const double @var{x}, const size_t @var{nderiv}, gsl_matrix * @var{dB}, size_t * @var{istart}, size_t * @var{iend}, gsl_bspline_workspace * @var{w}, gsl_bspline_deriv_workspace * @var{dw})This function evaluates all potentially nonzero B-spline basis functionderivatives of orders @math{0} through @math{nderiv} (inclusive) atthe position @var{x} and stores them in @var{dB}.  The @math{(i,j)}thelement of @var{dB} is @math{d^j/dx^j B_(istart+i)(x)}.  The last rowof @var{dB} contains @math{d^j/dx^j B_(iend)(x)}.  @var{dB} must beof size @math{k} by at least @math{nderiv + 1}.  Note that functionevaluations are included as the @math{0}th order derivatives in @var{dB}.Only returning nonzero basis functions allows users to more cheaplyperform tasks requiring linear combinations of the basis functions, e.g.when evaluating an interpolated function.@end deftypefun@node Example programs for B-splines@section Example programs for B-splines@cindex basis splines, examplesThe following program computes a linear least squares fit to data usingcubic B-spline basis functions with uniform breakpoints. The data isgenerated from the curve @math{y(x) = \cos{(x)} \exp{(-x/10)}} on@math{[0, 15]} with gaussian noise added.@example@verbatiminclude examples/bspline.c@end exampleThe output can be plotted with @sc{gnu} @code{graph}.@example$ ./a.out > bspline.datchisq/dof = 1.118217e+00, Rsq = 0.989771$ graph -T ps -X x -Y y -x 0 15 -y -1 1.3 < bspline.dat > bspline.ps@end example@iftex@sp 1@center @image{bspline,3.4in}@end iftex@node References and Further Reading@section References and Further ReadingFurther information on the algorithms described in this section can befound in the following book,@itemize @asisC. de Boor, @cite{A Practical Guide to Splines} (1978), Springer-Verlag,ISBN 0-387-90356-9.@end itemize@noindentA large collection of B-spline routines is available in the@sc{pppack} library available at @uref{http://www.netlib.org/pppack},which is also part of @sc{slatec}.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产网红主播福利一区二区| 欧美视频在线一区二区三区| 中文久久乱码一区二区| 成人一区二区三区视频| 亚洲视频图片小说| 欧美日韩中字一区| 激情伊人五月天久久综合| 国产亚洲成aⅴ人片在线观看| 国产99一区视频免费| 中文字幕视频一区| 欧美日韩在线直播| 韩国成人在线视频| 中文字幕一区在线观看| 欧美午夜免费电影| 麻豆成人在线观看| 亚洲婷婷综合久久一本伊一区| 欧美在线你懂得| 激情深爱一区二区| 一区二区三区中文字幕在线观看| 欧美精品久久一区| 国产一区二区精品在线观看| 亚洲免费高清视频在线| 51精品秘密在线观看| 高清shemale亚洲人妖| 一级中文字幕一区二区| 久久亚洲一级片| 欧美午夜精品一区二区蜜桃| 精品一区二区三区在线视频| 亚洲欧美日韩系列| 欧美mv和日韩mv国产网站| 91丝袜美女网| 狠狠狠色丁香婷婷综合激情 | 狠狠狠色丁香婷婷综合激情| 国产精品久久免费看| 337p亚洲精品色噜噜噜| 成人av网站在线观看免费| 蜜臀va亚洲va欧美va天堂| 国产精品天天看| 日韩三级精品电影久久久| 一本色道a无线码一区v| 国产伦精品一区二区三区视频青涩| 亚洲欧美日韩国产综合在线| 26uuu成人网一区二区三区| 欧美亚洲日本一区| av一区二区三区四区| 国产尤物一区二区| 日本怡春院一区二区| 亚洲最色的网站| 国产精品传媒入口麻豆| 337p日本欧洲亚洲大胆精品| 欧美日韩性生活| 一本色道综合亚洲| 不卡av在线网| 国产成人午夜精品5599| 九一九一国产精品| 天天色天天爱天天射综合| 亚洲精选免费视频| 国产精品国产自产拍高清av | 国产精品国产精品国产专区不片 | 国产精品一区二区黑丝| 天天综合天天做天天综合| 亚洲天堂成人在线观看| 欧美国产精品一区二区| 久久精品亚洲麻豆av一区二区| 精品免费日韩av| 精品国产免费人成在线观看| 91精品免费观看| 欧美一区二区三区系列电影| 欧美日韩国产美| 欧美男男青年gay1069videost| 色播五月激情综合网| 99久久精品情趣| 91麻豆福利精品推荐| 91麻豆精品一区二区三区| 99精品一区二区| 91丨porny丨首页| 在线视频你懂得一区二区三区| 色综合久久66| 欧美精品自拍偷拍动漫精品| 欧美亚洲动漫另类| 欧美剧情电影在线观看完整版免费励志电影 | 色婷婷激情综合| 欧美色欧美亚洲另类二区| 欧美三级日韩在线| 69p69国产精品| 精品久久久久久最新网址| 久久在线观看免费| 国产精品久久久久影院| 亚洲人成电影网站色mp4| 亚洲在线视频一区| 日韩高清中文字幕一区| 国产在线视频精品一区| 国产高清在线精品| 精品盗摄一区二区三区| 26uuu国产在线精品一区二区| 国产日韩精品一区二区浪潮av | 91国模大尺度私拍在线视频 | 91精品国产综合久久久蜜臀图片| 日韩一级高清毛片| 国产日韩av一区二区| 成人免费小视频| 一区2区3区在线看| 久久99精品视频| 成人午夜激情片| 欧美高清视频在线高清观看mv色露露十八| 91精品国产乱| 国产精品午夜在线| 午夜久久福利影院| 国产传媒欧美日韩成人| 91国偷自产一区二区开放时间 | 日韩一级黄色片| 国产精品少妇自拍| 亚洲国产一区二区a毛片| 久久精品久久精品| 97久久精品人人做人人爽| 9191久久久久久久久久久| 久久久久久夜精品精品免费| 亚洲欧美日韩国产成人精品影院| 三级亚洲高清视频| 99vv1com这只有精品| 日韩欧美一级精品久久| 亚洲欧美日韩中文字幕一区二区三区 | 成人午夜视频在线观看| 91精品国产综合久久久久久久久久 | 欧美亚一区二区| 国产日韩欧美制服另类| 午夜精品久久久久久| 成人开心网精品视频| 日韩欧美一区中文| 一区二区欧美视频| 成人一二三区视频| ww亚洲ww在线观看国产| 亚洲五月六月丁香激情| 成人sese在线| 精品成人一区二区三区四区| 亚洲成人黄色小说| 99re成人精品视频| 国产亚洲一区二区在线观看| 人禽交欧美网站| 色哟哟国产精品| 中文字幕巨乱亚洲| 国产在线播放一区三区四| 欧美老女人在线| 亚洲一区视频在线| 99在线精品观看| 中文字幕精品一区| 国产精品 欧美精品| 精品国精品自拍自在线| 亚洲成av人片在线| 色久综合一二码| 午夜电影久久久| 在线中文字幕不卡| 亚洲免费观看视频| 91浏览器入口在线观看| 亚洲欧美在线aaa| 国产91精品一区二区麻豆亚洲| 欧美成人免费网站| 久久se精品一区二区| 日韩欧美在线观看一区二区三区| 无吗不卡中文字幕| 欧美精品一二三区| 亚洲18色成人| 欧美精品日韩一区| 日韩精彩视频在线观看| 777午夜精品视频在线播放| 日本午夜精品一区二区三区电影| 欧美日韩一区三区| 偷拍亚洲欧洲综合| 欧美福利视频一区| 日本中文字幕一区| 欧美精品一区二区三区很污很色的 | 亚洲国产成人私人影院tom| 粉嫩aⅴ一区二区三区四区五区| 欧美国产欧美综合| 91老司机福利 在线| 亚洲精品高清在线| 欧美日本一区二区| 视频一区中文字幕国产| 精品噜噜噜噜久久久久久久久试看| 久久精品国产在热久久| 久久久久97国产精华液好用吗| 国产一区二区在线电影| 国产精品久久久久久久久动漫 | 中文字幕一区二区5566日韩| 一道本成人在线| 日韩国产精品久久久| 久久综合久久鬼色中文字| 福利视频网站一区二区三区| 亚洲手机成人高清视频| 欧美情侣在线播放| 国产一区二区美女诱惑| 成人免费一区二区三区视频| 欧美日韩专区在线| 国产毛片精品一区| 亚洲精品视频观看| 精品国产一区二区三区不卡| www.欧美精品一二区| 日韩福利电影在线观看| 中文字幕二三区不卡| 欧美日本乱大交xxxxx|