亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? upmlfdtd3d.m

?? Upml的FDTD程序 3維的FDTD程序
?? M
?? 第 1 頁 / 共 2 頁
字號:
%***********************************************************************
%     3-D FDTD code with UPML absorbing boundary conditions
%***********************************************************************
%
%     Program author: Keely J. Willis, Graduate Student
%                     UW Computational Electromagnetics Laboratory
%                           Director: Susan C. Hagness
%                     Department of Electrical and Computer Engineering
%                     University of Wisconsin-Madison
%                     1415 Engineering Drive
%                     Madison, WI 53706-1691
%                     kjwillis@wisc.edu
%
%     Copyright 2005
%
%     This MATLAB M-file implements the finite-difference time-domain
%     solution of Maxwell's curl equations over a three-dimensional
%     Cartesian space lattice comprised of uniform cubic grid cells.
%     
%     The dimensions of the computational domain are 8.2 cm
%     (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).  
%     The grid is terminated with UPML absorbing boundary conditions.
%
%     An electric current source comprised of two collinear Jz components
%     (realizing a Hertzian dipole) excites a radially propagating wave.  
%     The current source is located in the center of the grid.  The 
%     source waveform is a differentiated Gaussian pulse given by 
%          J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2), 
%     where tau=50 ps.  The FWHM spectral bandwidth of this zero-dc-
%     content pulse is approximately 7 GHz. The grid resolution 
%     (dx = 2 mm) was chosen to provide at least 10 samples per 
%     wavelength up through 15 GHz.
%
%     To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.  
%
%     This code has been tested in the following Matlab environments:
%     Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
%     Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
%     Matlab version 7.0.0.19920 R14 (May 6, 2004)
%     Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
%     Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
%
%     Note: if you are using Matlab version 6.x, you may wish to make
%     one or more of the following modifications to this code: 
%       --uncomment line numbers 485 and 486
%       --comment out line numbers 552 and 561
%
%***********************************************************************

clear

%***********************************************************************
%     Fundamental constants
%***********************************************************************

cc=2.99792458e8;
muz=4.0*pi*1.0e-7;
epsz=1.0/(cc*cc*muz);
etaz=sqrt(muz/epsz);

%***********************************************************************
%     Material parameters 
%***********************************************************************

mur=1.0;
epsr=1.0;
eta=etaz*sqrt(mur/epsr);

%***********************************************************************
%     Grid parameters
%
%     Each grid size variable name describes the number of sampled points 
%     for a particular field component in the direction of that component.
%     Additionally, the variable names indicate the region of the grid 
%     for which the dimension is relevant.  For example, ie_tot is the 
%     number of sample points of Ex along the x-axis in the total 
%     computational grid, and jh_bc is the number of sample points of Hy 
%     along the y-axis in the y-normal UPML regions.
%
%***********************************************************************

ie=41;          % Size of main grid
je=17;
ke=16;
ih=ie+1;
jh=je+1;   
kh=ke+1;   

upml=10;        % Thickness of PML boundaries
ih_bc=upml+1;
jh_bc=upml+1;
kh_bc=upml+1;

ie_tot=ie+2*upml;          % Size of total computational domain
je_tot=je+2*upml;        
ke_tot=ke+2*upml;        
ih_tot=ie_tot+1;
jh_tot=je_tot+1;          
kh_tot=ke_tot+1;          

is=round(ih_tot/2);         % Location of z-directed current source
js=round(jh_tot/2);
ks=round(ke_tot/2);

%***********************************************************************
%     Fundamental grid parameters
%***********************************************************************

delta=0.002;
dt=delta*sqrt(epsr*mur)/(2.0*cc);
nmax=100;

%***********************************************************************
%     Differentiated Gaussian pulse excitation
%***********************************************************************

rtau=50.0e-12;
tau=rtau/dt;
ndelay=3*tau;
J0=-1.0*epsz;

%***********************************************************************
%     Initialize field arrays
%***********************************************************************

ex=zeros(ie_tot,jh_tot,kh_tot);
ey=zeros(ih_tot,je_tot,kh_tot);
ez=zeros(ih_tot,jh_tot,ke_tot);
dx=zeros(ie_tot,jh_tot,kh_tot);
dy=zeros(ih_tot,je_tot,kh_tot);
dz=zeros(ih_tot,jh_tot,ke_tot);

hx=zeros(ih_tot,je_tot,ke_tot);
hy=zeros(ie_tot,jh_tot,ke_tot);
hz=zeros(ie_tot,je_tot,kh_tot);
bx=zeros(ih_tot,je_tot,ke_tot);
by=zeros(ie_tot,jh_tot,ke_tot);
bz=zeros(ie_tot,je_tot,kh_tot);

%***********************************************************************
%     Initialize update coefficient arrays
%***********************************************************************

C1ex=zeros(size(ex));
C2ex=zeros(size(ex));
C3ex=zeros(size(ex));
C4ex=zeros(size(ex));
C5ex=zeros(size(ex));
C6ex=zeros(size(ex));

C1ey=zeros(size(ey));
C2ey=zeros(size(ey));
C3ey=zeros(size(ey));
C4ey=zeros(size(ey));
C5ey=zeros(size(ey));
C6ey=zeros(size(ey));

C1ez=zeros(size(ez));
C2ez=zeros(size(ez));
C3ez=zeros(size(ez));
C4ez=zeros(size(ez));
C5ez=zeros(size(ez));
C6ez=zeros(size(ez));

D1hx=zeros(size(hx));
D2hx=zeros(size(hx));
D3hx=zeros(size(hx));
D4hx=zeros(size(hx));
D5hx=zeros(size(hx));
D6hx=zeros(size(hx));

D1hy=zeros(size(hy));
D2hy=zeros(size(hy));
D3hy=zeros(size(hy));
D4hy=zeros(size(hy));
D5hy=zeros(size(hy));
D6hy=zeros(size(hy));

D1hz=zeros(size(hz));
D2hz=zeros(size(hz));
D3hz=zeros(size(hz));
D4hz=zeros(size(hz));
D5hz=zeros(size(hz));
D6hz=zeros(size(hz));

%***********************************************************************
%     Update coefficients, as described in Section 7.8.2.
%
%     In order to simplify the update equations used in the time-stepping
%     loop, we implement UPML update equations throughout the entire
%     grid.  In the main grid, the electric-field update coefficients of 
%     Equations 7.91a-f and the correponding magnetic field update
%     coefficients extracted from Equations 7.89 and 7.90 are simplified
%     for the main grid (free space) and calculated below.
%
%***********************************************************************

C1=1.0;
C2=dt;
C3=1.0;
C4=1.0/2.0/epsr/epsr/epsz/epsz;
C5=2.0*epsr*epsz;
C6=2.0*epsr*epsz;

D1=1.0;
D2=dt;
D3=1.0;
D4=1.0/2.0/epsr/epsz/mur/muz;
D5=2.0*epsr*epsz;
D6=2.0*epsr*epsz;

%***********************************************************************
%     Initialize main grid update coefficients
%***********************************************************************

C1ex(:,jh_bc:jh_tot-upml,:)=C1;     
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
C6ex(ih_bc:ie_tot-upml,:,:)=C6;

C1ey(:,:,kh_bc:kh_tot-upml)=C1;
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
C5ey(:,jh_bc:je_tot-upml,:)=C5;
C6ey(:,jh_bc:je_tot-upml,:)=C6;

C1ez(ih_bc:ih_tot-upml,:,:)=C1;
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
C6ez(:,:,kh_bc:ke_tot-upml)=C6;

D1hx(:,jh_bc:je_tot-upml,:)=D1;
D2hx(:,jh_bc:je_tot-upml,:)=D2;
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
D6hx(ih_bc:ih_tot-upml,:,:)=D6;

D1hy(:,:,kh_bc:ke_tot-upml)=D1;
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
D6hy(:,jh_bc:jh_tot-upml,:)=D6;

D1hz(ih_bc:ie_tot-upml,:,:)=D1;
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
D3hz(:,jh_bc:je_tot-upml,:)=D3;
D4hz(:,jh_bc:je_tot-upml,:)=D4;
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
D6hz(:,:,kh_bc:kh_tot-upml)=D6;

%***********************************************************************
%     Fill in PML regions
% 
%     PML theory describes a continuous grading of the material properties
%     over the PML region.  In the FDTD grid it is necessary to discretize
%     the grading by averaging the material properties over a grid cell 
%     width centered on each field component.  As an example of the 
%     implementation of this averaging, we take the integral of the 
%     continuous sigma(x) in the PML region
%   
%         sigma_i = integral(sigma(x))/delta
%   
%     where the integral is over a single grid cell width in x, and is 
%     bounded by x1 and x2.  Applying this to the polynomial grading of 
%     Equation 7.60a produces
%
%         sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
%
%     where sigmam is the maximum value of sigma as described by Equation 
%     7.62. 
%         
%     The definitions of x1 and x2 depend on the position of the field 
%     component within the grid cell.  We have either
%
%         x1 = (i-0.5)*delta,  x2 = (i+0.5)*delta
%  
%     or
%  
%         x1 = (i)*delta,      x2 = (i+1)*delta
%

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91.xcao| 欧美乱妇15p| 亚洲一区二区三区四区不卡| 日韩视频在线你懂得| 色综合激情五月| 国产麻豆精品95视频| 视频一区二区三区中文字幕| 亚洲国产成人自拍| 日韩欧美视频在线| 欧美在线观看视频一区二区 | 欧美夫妻性生活| 99久久久无码国产精品| 国内精品伊人久久久久av影院 | 成人av资源在线观看| 蜜桃精品在线观看| 亚洲综合丁香婷婷六月香| 国产目拍亚洲精品99久久精品| 5858s免费视频成人| 在线亚洲高清视频| av一区二区三区在线| 国产91色综合久久免费分享| 久久99这里只有精品| 三级一区在线视频先锋| 亚洲色图20p| 国产精品久久久久久久午夜片| 久久亚洲精华国产精华液| 日韩女优视频免费观看| 欧美一区二区在线视频| 欧美日本在线一区| 欧美日韩视频第一区| 在线欧美一区二区| 欧美在线不卡一区| 在线欧美日韩精品| 欧美日韩国产首页在线观看| 欧美日韩国产欧美日美国产精品| 色综合久久88色综合天天免费| 99久久综合国产精品| 成人v精品蜜桃久久一区| 不卡av在线免费观看| 北条麻妃国产九九精品视频| 成人精品一区二区三区四区| 成人黄色a**站在线观看| www.成人在线| 91免费在线视频观看| 91精彩视频在线观看| 欧美三级中文字幕在线观看| 欧美日韩精品一二三区| 制服丝袜亚洲网站| 欧美成人精精品一区二区频| 精品剧情在线观看| 欧美韩日一区二区三区四区| 国产精品动漫网站| 一区二区三区在线观看网站| 首页国产欧美久久| 玖玖九九国产精品| 国产成人精品aa毛片| 色综合天天视频在线观看| 色婷婷亚洲一区二区三区| 欧美精品日日鲁夜夜添| 精品久久久久久久久久久久久久久 | 国产精品美日韩| 一区二区欧美在线观看| 日韩综合在线视频| 狠狠色丁香婷婷综合| aaa欧美日韩| 欧美日韩中文精品| 久久久美女艺术照精彩视频福利播放| 国产蜜臀av在线一区二区三区| 亚洲乱码国产乱码精品精小说 | 亚洲国产aⅴ成人精品无吗| 日韩不卡手机在线v区| 久草这里只有精品视频| 成人免费视频视频| 欧美日韩国产片| 国产三级精品三级| 亚洲成av人片在线观看无码| 国产麻豆视频一区二区| 91无套直看片红桃| 日韩免费一区二区三区在线播放| 中文字幕高清不卡| 五月婷婷综合在线| 国产a区久久久| 91精品婷婷国产综合久久| 国产午夜一区二区三区| 一个色综合av| 精品一区二区精品| 欧美性受极品xxxx喷水| 国产亚洲精品中文字幕| 天堂久久一区二区三区| 成人av动漫在线| 一区二区欧美国产| 国内精品久久久久影院薰衣草| 99久久精品久久久久久清纯| 91精品国产综合久久香蕉的特点 | 色国产综合视频| 亚洲精品一区二区在线观看| 一级特黄大欧美久久久| 国产a区久久久| 欧美一区二区三区的| 亚洲欧美日韩在线不卡| 国产一二三精品| 制服丝袜av成人在线看| 亚洲欧美日韩久久精品| 国产成人午夜视频| 欧美一区二区在线视频| 亚洲国产中文字幕| 99久久国产免费看| 国产日韩av一区二区| 久久精品国产一区二区三| 欧美日韩视频专区在线播放| 中文字幕字幕中文在线中不卡视频| 九九热在线视频观看这里只有精品 | 成人av集中营| 久久精品亚洲麻豆av一区二区| 日韩国产精品91| 欧洲一区二区三区免费视频| 国产精品免费丝袜| 国产精品综合二区| 精品88久久久久88久久久| 日本va欧美va精品发布| 欧美色视频在线| 亚洲国产精品一区二区久久恐怖片 | 日韩欧美在线一区二区三区| 亚洲五码中文字幕| 欧美视频在线播放| 一区二区日韩av| 欧美亚洲免费在线一区| 亚洲色欲色欲www| 94-欧美-setu| 亚洲欧美日韩人成在线播放| 99久精品国产| 亚洲乱码中文字幕| 在线观看日韩电影| 午夜一区二区三区视频| 欧美日韩亚洲综合| 五月天亚洲精品| 欧美一区二区三区免费观看视频| 日韩精品一卡二卡三卡四卡无卡| 欧美一区二区在线不卡| 日韩精品国产精品| 日韩女优制服丝袜电影| 久国产精品韩国三级视频| 精品免费日韩av| 国产乱码精品1区2区3区| 久久精品欧美一区二区三区麻豆| 国产一区二区三区免费播放| 国产夜色精品一区二区av| 成人av网站在线观看免费| 亚洲欧美乱综合| 欧美精品日韩一本| 美女www一区二区| 久久九九99视频| va亚洲va日韩不卡在线观看| 亚洲免费av在线| 在线播放中文字幕一区| 麻豆精品新av中文字幕| 久久日一线二线三线suv| 国产高清精品网站| 国产精品视频第一区| 色94色欧美sute亚洲13| 丝袜亚洲精品中文字幕一区| 日韩色在线观看| 成人在线综合网| 亚洲线精品一区二区三区八戒| 日韩免费高清电影| 丁香婷婷综合激情五月色| 亚洲视频一区二区在线观看| 欧美三级日韩三级国产三级| 蜜桃传媒麻豆第一区在线观看| 久久久精品黄色| 欧美午夜精品久久久久久孕妇| 免费成人在线影院| 中文字幕亚洲成人| 91精品国产综合久久久久久漫画| 国产资源在线一区| 一区二区三区精密机械公司| 日韩欧美另类在线| 色婷婷综合久色| 国产原创一区二区| 亚洲一区二区在线视频| 久久综合精品国产一区二区三区 | 91碰在线视频| 国内精品久久久久影院色| 亚洲黄色在线视频| 制服丝袜亚洲精品中文字幕| 丰满亚洲少妇av| 麻豆精品新av中文字幕| 亚洲欧美精品午睡沙发| 精品sm捆绑视频| 欧美日精品一区视频| 丁香婷婷深情五月亚洲| 日韩av电影免费观看高清完整版| 国产精品拍天天在线| 日韩一区国产二区欧美三区| aaa亚洲精品| 国产精品99久久久久久久女警| 午夜影院久久久| 亚洲少妇最新在线视频| 在线播放91灌醉迷j高跟美女| 成人精品一区二区三区四区|