亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? upmlfdtd3d.m

?? Upml的FDTD程序 3維的FDTD程序
?? M
?? 第 1 頁 / 共 2 頁
字號:
%***********************************************************************
%     3-D FDTD code with UPML absorbing boundary conditions
%***********************************************************************
%
%     Program author: Keely J. Willis, Graduate Student
%                     UW Computational Electromagnetics Laboratory
%                           Director: Susan C. Hagness
%                     Department of Electrical and Computer Engineering
%                     University of Wisconsin-Madison
%                     1415 Engineering Drive
%                     Madison, WI 53706-1691
%                     kjwillis@wisc.edu
%
%     Copyright 2005
%
%     This MATLAB M-file implements the finite-difference time-domain
%     solution of Maxwell's curl equations over a three-dimensional
%     Cartesian space lattice comprised of uniform cubic grid cells.
%     
%     The dimensions of the computational domain are 8.2 cm
%     (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).  
%     The grid is terminated with UPML absorbing boundary conditions.
%
%     An electric current source comprised of two collinear Jz components
%     (realizing a Hertzian dipole) excites a radially propagating wave.  
%     The current source is located in the center of the grid.  The 
%     source waveform is a differentiated Gaussian pulse given by 
%          J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2), 
%     where tau=50 ps.  The FWHM spectral bandwidth of this zero-dc-
%     content pulse is approximately 7 GHz. The grid resolution 
%     (dx = 2 mm) was chosen to provide at least 10 samples per 
%     wavelength up through 15 GHz.
%
%     To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.  
%
%     This code has been tested in the following Matlab environments:
%     Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
%     Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
%     Matlab version 7.0.0.19920 R14 (May 6, 2004)
%     Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
%     Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
%
%     Note: if you are using Matlab version 6.x, you may wish to make
%     one or more of the following modifications to this code: 
%       --uncomment line numbers 485 and 486
%       --comment out line numbers 552 and 561
%
%***********************************************************************

clear

%***********************************************************************
%     Fundamental constants
%***********************************************************************

cc=2.99792458e8;
muz=4.0*pi*1.0e-7;
epsz=1.0/(cc*cc*muz);
etaz=sqrt(muz/epsz);

%***********************************************************************
%     Material parameters 
%***********************************************************************

mur=1.0;
epsr=1.0;
eta=etaz*sqrt(mur/epsr);

%***********************************************************************
%     Grid parameters
%
%     Each grid size variable name describes the number of sampled points 
%     for a particular field component in the direction of that component.
%     Additionally, the variable names indicate the region of the grid 
%     for which the dimension is relevant.  For example, ie_tot is the 
%     number of sample points of Ex along the x-axis in the total 
%     computational grid, and jh_bc is the number of sample points of Hy 
%     along the y-axis in the y-normal UPML regions.
%
%***********************************************************************

ie=41;          % Size of main grid
je=17;
ke=16;
ih=ie+1;
jh=je+1;   
kh=ke+1;   

upml=10;        % Thickness of PML boundaries
ih_bc=upml+1;
jh_bc=upml+1;
kh_bc=upml+1;

ie_tot=ie+2*upml;          % Size of total computational domain
je_tot=je+2*upml;        
ke_tot=ke+2*upml;        
ih_tot=ie_tot+1;
jh_tot=je_tot+1;          
kh_tot=ke_tot+1;          

is=round(ih_tot/2);         % Location of z-directed current source
js=round(jh_tot/2);
ks=round(ke_tot/2);

%***********************************************************************
%     Fundamental grid parameters
%***********************************************************************

delta=0.002;
dt=delta*sqrt(epsr*mur)/(2.0*cc);
nmax=100;

%***********************************************************************
%     Differentiated Gaussian pulse excitation
%***********************************************************************

rtau=50.0e-12;
tau=rtau/dt;
ndelay=3*tau;
J0=-1.0*epsz;

%***********************************************************************
%     Initialize field arrays
%***********************************************************************

ex=zeros(ie_tot,jh_tot,kh_tot);
ey=zeros(ih_tot,je_tot,kh_tot);
ez=zeros(ih_tot,jh_tot,ke_tot);
dx=zeros(ie_tot,jh_tot,kh_tot);
dy=zeros(ih_tot,je_tot,kh_tot);
dz=zeros(ih_tot,jh_tot,ke_tot);

hx=zeros(ih_tot,je_tot,ke_tot);
hy=zeros(ie_tot,jh_tot,ke_tot);
hz=zeros(ie_tot,je_tot,kh_tot);
bx=zeros(ih_tot,je_tot,ke_tot);
by=zeros(ie_tot,jh_tot,ke_tot);
bz=zeros(ie_tot,je_tot,kh_tot);

%***********************************************************************
%     Initialize update coefficient arrays
%***********************************************************************

C1ex=zeros(size(ex));
C2ex=zeros(size(ex));
C3ex=zeros(size(ex));
C4ex=zeros(size(ex));
C5ex=zeros(size(ex));
C6ex=zeros(size(ex));

C1ey=zeros(size(ey));
C2ey=zeros(size(ey));
C3ey=zeros(size(ey));
C4ey=zeros(size(ey));
C5ey=zeros(size(ey));
C6ey=zeros(size(ey));

C1ez=zeros(size(ez));
C2ez=zeros(size(ez));
C3ez=zeros(size(ez));
C4ez=zeros(size(ez));
C5ez=zeros(size(ez));
C6ez=zeros(size(ez));

D1hx=zeros(size(hx));
D2hx=zeros(size(hx));
D3hx=zeros(size(hx));
D4hx=zeros(size(hx));
D5hx=zeros(size(hx));
D6hx=zeros(size(hx));

D1hy=zeros(size(hy));
D2hy=zeros(size(hy));
D3hy=zeros(size(hy));
D4hy=zeros(size(hy));
D5hy=zeros(size(hy));
D6hy=zeros(size(hy));

D1hz=zeros(size(hz));
D2hz=zeros(size(hz));
D3hz=zeros(size(hz));
D4hz=zeros(size(hz));
D5hz=zeros(size(hz));
D6hz=zeros(size(hz));

%***********************************************************************
%     Update coefficients, as described in Section 7.8.2.
%
%     In order to simplify the update equations used in the time-stepping
%     loop, we implement UPML update equations throughout the entire
%     grid.  In the main grid, the electric-field update coefficients of 
%     Equations 7.91a-f and the correponding magnetic field update
%     coefficients extracted from Equations 7.89 and 7.90 are simplified
%     for the main grid (free space) and calculated below.
%
%***********************************************************************

C1=1.0;
C2=dt;
C3=1.0;
C4=1.0/2.0/epsr/epsr/epsz/epsz;
C5=2.0*epsr*epsz;
C6=2.0*epsr*epsz;

D1=1.0;
D2=dt;
D3=1.0;
D4=1.0/2.0/epsr/epsz/mur/muz;
D5=2.0*epsr*epsz;
D6=2.0*epsr*epsz;

%***********************************************************************
%     Initialize main grid update coefficients
%***********************************************************************

C1ex(:,jh_bc:jh_tot-upml,:)=C1;     
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
C6ex(ih_bc:ie_tot-upml,:,:)=C6;

C1ey(:,:,kh_bc:kh_tot-upml)=C1;
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
C5ey(:,jh_bc:je_tot-upml,:)=C5;
C6ey(:,jh_bc:je_tot-upml,:)=C6;

C1ez(ih_bc:ih_tot-upml,:,:)=C1;
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
C6ez(:,:,kh_bc:ke_tot-upml)=C6;

D1hx(:,jh_bc:je_tot-upml,:)=D1;
D2hx(:,jh_bc:je_tot-upml,:)=D2;
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
D6hx(ih_bc:ih_tot-upml,:,:)=D6;

D1hy(:,:,kh_bc:ke_tot-upml)=D1;
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
D6hy(:,jh_bc:jh_tot-upml,:)=D6;

D1hz(ih_bc:ie_tot-upml,:,:)=D1;
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
D3hz(:,jh_bc:je_tot-upml,:)=D3;
D4hz(:,jh_bc:je_tot-upml,:)=D4;
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
D6hz(:,:,kh_bc:kh_tot-upml)=D6;

%***********************************************************************
%     Fill in PML regions
% 
%     PML theory describes a continuous grading of the material properties
%     over the PML region.  In the FDTD grid it is necessary to discretize
%     the grading by averaging the material properties over a grid cell 
%     width centered on each field component.  As an example of the 
%     implementation of this averaging, we take the integral of the 
%     continuous sigma(x) in the PML region
%   
%         sigma_i = integral(sigma(x))/delta
%   
%     where the integral is over a single grid cell width in x, and is 
%     bounded by x1 and x2.  Applying this to the polynomial grading of 
%     Equation 7.60a produces
%
%         sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
%
%     where sigmam is the maximum value of sigma as described by Equation 
%     7.62. 
%         
%     The definitions of x1 and x2 depend on the position of the field 
%     component within the grid cell.  We have either
%
%         x1 = (i-0.5)*delta,  x2 = (i+0.5)*delta
%  
%     or
%  
%         x1 = (i)*delta,      x2 = (i+1)*delta
%

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品在线播放免费| 久久久久久久久免费| 久久综合成人精品亚洲另类欧美 | 精品写真视频在线观看| 在线观看日韩电影| 亚洲欧洲日韩女同| eeuss鲁片一区二区三区在线看| 欧美成人aa大片| 日韩av成人高清| 日韩欧美一区二区在线视频| 亚洲va国产va欧美va观看| 欧美性大战xxxxx久久久| 亚洲靠逼com| 在线免费观看日韩欧美| 一区二区在线观看免费| 一本一道久久a久久精品综合蜜臀| 国产精品高潮呻吟| 91在线看国产| 一级特黄大欧美久久久| 欧美日韩在线综合| 首页亚洲欧美制服丝腿| 在线不卡欧美精品一区二区三区| 午夜伦欧美伦电影理论片| 3atv在线一区二区三区| 美女免费视频一区| www久久精品| 不卡视频在线观看| 亚洲自拍都市欧美小说| 在线不卡欧美精品一区二区三区| 美国三级日本三级久久99| 久久久久亚洲蜜桃| 99热精品国产| 午夜电影一区二区| 亚洲精品一区二区三区精华液| 国产精品一区二区久激情瑜伽| 亚洲国产精品成人综合| 91精彩视频在线观看| 日韩成人av影视| 中文在线资源观看网站视频免费不卡 | 91精品91久久久中77777| 亚洲国产精品麻豆| 欧美大片国产精品| 成人av午夜电影| 香蕉影视欧美成人| 国产午夜精品久久| 欧美色偷偷大香| 国产在线播精品第三| 亚洲精选视频免费看| 欧美一区二区三区在线电影| 国产一区二区日韩精品| 亚洲人成网站色在线观看| 欧美巨大另类极品videosbest| 美女www一区二区| 国产精品黄色在线观看| 欧美一区二区视频网站| 99久久久久久| 美女脱光内衣内裤视频久久影院| 中文字幕亚洲在| 欧美一区二区三区影视| 成人av在线一区二区| 青青草国产精品97视觉盛宴| 中文字幕视频一区| 日韩欧美国产精品一区| 91蜜桃免费观看视频| 久久99在线观看| 亚洲午夜久久久久久久久电影网| 国产亚洲精品aa午夜观看| 欧美精品在线视频| 91视视频在线观看入口直接观看www | 欧美日韩国产综合草草| 国产精品伊人色| 亚洲一级在线观看| 《视频一区视频二区| 久久久www免费人成精品| 欧美一区二区三区四区视频| 91色九色蝌蚪| 国产91精品欧美| 国产一级精品在线| 精品午夜久久福利影院| 图片区小说区区亚洲影院| 亚洲欧美日韩综合aⅴ视频| 久久久久99精品一区| 欧美成人国产一区二区| 欧美精品日韩精品| 色噜噜偷拍精品综合在线| 成人成人成人在线视频| 国产一区二区三区久久悠悠色av| 日韩电影在线一区二区| 亚洲国产精品久久久男人的天堂| 亚洲欧美在线视频观看| 欧美韩国日本不卡| 国产日产欧美一区二区视频| 精品久久久久久久久久久久久久久久久 | 亚洲第一狼人社区| 日韩美女视频19| 国产精品久久网站| 一区在线播放视频| 中文字幕一区不卡| 亚洲视频一二区| 亚洲男人的天堂av| 亚洲欧美国产三级| 亚洲精品第1页| 亚洲妇熟xx妇色黄| 日韩一区二区三区视频在线观看| 欧美bbbbb| 首页国产欧美日韩丝袜| 一区二区三区精品在线| 亚洲视频一区二区在线| 亚洲精品亚洲人成人网 | 欧美成人福利视频| 91精品国产综合久久久久| 欧美人伦禁忌dvd放荡欲情| 欧美中文字幕亚洲一区二区va在线| 一本大道久久a久久精二百| 91久久精品一区二区三区| 在线观看一区日韩| 欧美日韩国产美| 欧美mv日韩mv国产网站| 久久综合久久鬼色中文字| 久久色.com| 国产精品久久久99| 亚洲狠狠爱一区二区三区| 午夜视频一区二区| 久久99国产精品尤物| 国产福利电影一区二区三区| 成人免费电影视频| 欧洲生活片亚洲生活在线观看| 欧美日韩黄色影视| 亚洲精品一区二区三区香蕉| 国产精品人妖ts系列视频| 亚洲激情中文1区| 免费在线看成人av| 高清国产一区二区| 色狠狠一区二区| 精品免费视频一区二区| 欧美国产精品一区| 亚洲成人av在线电影| 精彩视频一区二区| 色www精品视频在线观看| 日韩欧美一级在线播放| 国产精品国产a级| 日韩精彩视频在线观看| 国产一区二区成人久久免费影院| av在线播放一区二区三区| 欧美丰满一区二区免费视频| 国产欧美一区二区精品性色| 亚洲综合无码一区二区| 久久99久国产精品黄毛片色诱| 99久久免费精品高清特色大片| 欧美日本不卡视频| 国产精品国产三级国产普通话三级| 午夜激情一区二区| thepron国产精品| 日韩欧美国产一区二区在线播放| 亚洲特黄一级片| 韩国精品免费视频| 欧美剧情电影在线观看完整版免费励志电影 | 欧美日韩精品系列| 中文字幕av资源一区| 日本一区中文字幕| 在线视频欧美精品| 久久久噜噜噜久噜久久综合| 三级在线观看一区二区| 亚洲国产精品t66y| 精品国产一二三区| 亚洲高清视频在线| 99国产精品久久久久久久久久| 日韩女同互慰一区二区| 夜夜精品视频一区二区 | 成人自拍视频在线观看| 欧美成人r级一区二区三区| 亚洲国产综合91精品麻豆| 成人小视频免费观看| 日韩一级片网站| 日韩国产高清影视| 777xxx欧美| 亚洲成人av福利| 欧美三级一区二区| 亚洲自拍与偷拍| 色久优优欧美色久优优| 亚洲天天做日日做天天谢日日欢| 国产乱人伦偷精品视频不卡| 日韩一级视频免费观看在线| 五月综合激情日本mⅴ| 欧美综合视频在线观看| 亚洲毛片av在线| 一本色道久久加勒比精品 | 夜夜精品视频一区二区| 一道本成人在线| 一区二区三区不卡视频| 在线免费观看日韩欧美| 亚洲一区二区三区在线看| 一本色道久久综合亚洲精品按摩 | 精品久久人人做人人爱| 免费人成精品欧美精品| 日韩一区二区三区电影在线观看| 男女视频一区二区| 精品国产91洋老外米糕| 国产一区二区视频在线| 国产婷婷色一区二区三区|