亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? contents.m

?? 馬爾可夫過程是一類重要的隨機(jī)過程,它的原始模型馬爾可夫鏈,由俄國數(shù)學(xué)家Α.Α.馬爾可夫于1907年提出。本程序是對隱馬爾可夫模型的一個完整的建模。
?? M
字號:
% Netlab Toolbox
% Version 3.3.1 	 18-Jun-2004
%
% conffig  -  Display a confusion matrix. 
% confmat  -  Compute a confusion matrix. 
% conjgrad -  Conjugate gradients optimization. 
% consist  -  Check that arguments are consistent. 
% convertoldnet-  Convert pre-2.3 release MLP and MDN nets to new format 
% datread  -  Read data from an ascii file. 
% datwrite -  Write data to ascii file. 
% dem2ddat -  Generates two dimensional data for demos. 
% demard   -  Automatic relevance determination using the MLP. 
% demev1   -  Demonstrate Bayesian regression for the MLP. 
% demev2   -  Demonstrate Bayesian classification for the MLP. 
% demev3   -  Demonstrate Bayesian regression for the RBF. 
% demgauss -  Demonstrate sampling from Gaussian distributions. 
% demglm1  -  Demonstrate simple classification using a generalized linear model. 
% demglm2  -  Demonstrate simple classification using a generalized linear model. 
% demgmm1  -  Demonstrate density modelling with a Gaussian mixture model. 
% demgmm3  -  Demonstrate density modelling with a Gaussian mixture model. 
% demgmm4  -  Demonstrate density modelling with a Gaussian mixture model. 
% demgmm5  -  Demonstrate density modelling with a PPCA mixture model. 
% demgp    -  Demonstrate simple regression using a Gaussian Process. 
% demgpard -  Demonstrate ARD using a Gaussian Process. 
% demgpot  -  Computes the gradient of the negative log likelihood for a mixture model. 
% demgtm1  -  Demonstrate EM for GTM. 
% demgtm2  -  Demonstrate GTM for visualisation. 
% demhint  -  Demonstration of Hinton diagram for 2-layer feed-forward network. 
% demhmc1  -  Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians. 
% demhmc2  -  Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. 
% demhmc3  -  Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. 
% demkmean -  Demonstrate simple clustering model trained with K-means. 
% demknn1  -  Demonstrate nearest neighbour classifier. 
% demmdn1  -  Demonstrate fitting a multi-valued function using a Mixture Density Network. 
% demmet1  -  Demonstrate Markov Chain Monte Carlo sampling on a Gaussian. 
% demmlp1  -  Demonstrate simple regression using a multi-layer perceptron 
% demmlp2  -  Demonstrate simple classification using a multi-layer perceptron 
% demnlab  -  A front-end Graphical User Interface to the demos 
% demns1   -  Demonstrate Neuroscale for visualisation. 
% demolgd1 -  Demonstrate simple MLP optimisation with on-line gradient descent 
% demopt1  -  Demonstrate different optimisers on Rosenbrock's function. 
% dempot   -  Computes the negative log likelihood for a mixture model. 
% demprgp  -  Demonstrate sampling from a Gaussian Process prior. 
% demprior -  Demonstrate sampling from a multi-parameter Gaussian prior. 
% demrbf1  -  Demonstrate simple regression using a radial basis function network. 
% demsom1  -  Demonstrate SOM for visualisation. 
% demtrain -  Demonstrate training of MLP network. 
% dist2    -  Calculates squared distance between two sets of points. 
% eigdec   -  Sorted eigendecomposition 
% errbayes -  Evaluate Bayesian error function for network. 
% evidence -  Re-estimate hyperparameters using evidence approximation. 
% fevbayes -  Evaluate Bayesian regularisation for network forward propagation. 
% gauss    -  Evaluate a Gaussian distribution. 
% gbayes   -  Evaluate gradient of Bayesian error function for network. 
% glm      -  Create a generalized linear model. 
% glmderiv -  Evaluate derivatives of GLM outputs with respect to weights. 
% glmerr   -  Evaluate error function for generalized linear model. 
% glmevfwd -  Forward propagation with evidence for GLM 
% glmfwd   -  Forward propagation through generalized linear model. 
% glmgrad  -  Evaluate gradient of error function for generalized linear model. 
% glmhess  -  Evaluate the Hessian matrix for a generalised linear model. 
% glminit  -  Initialise the weights in a generalized linear model. 
% glmpak   -  Combines weights and biases into one weights vector. 
% glmtrain -  Specialised training of generalized linear model 
% glmunpak -  Separates weights vector into weight and bias matrices. 
% gmm      -  Creates a Gaussian mixture model with specified architecture. 
% gmmactiv -  Computes the activations of a Gaussian mixture model. 
% gmmem    -  EM algorithm for Gaussian mixture model. 
% gmminit  -  Initialises Gaussian mixture model from data 
% gmmpak   -  Combines all the parameters in a Gaussian mixture model into one vector. 
% gmmpost  -  Computes the class posterior probabilities of a Gaussian mixture model. 
% gmmprob  -  Computes the data probability for a Gaussian mixture model. 
% gmmsamp  -  Sample from a Gaussian mixture distribution. 
% gmmunpak -  Separates a vector of Gaussian mixture model parameters into its components. 
% gp       -  Create a Gaussian Process. 
% gpcovar  -  Calculate the covariance for a Gaussian Process. 
% gpcovarf -  Calculate the covariance function for a Gaussian Process. 
% gpcovarp -  Calculate the prior covariance for a Gaussian Process. 
% gperr    -  Evaluate error function for Gaussian Process. 
% gpfwd    -  Forward propagation through Gaussian Process. 
% gpgrad   -  Evaluate error gradient for Gaussian Process. 
% gpinit   -  Initialise Gaussian Process model. 
% gppak    -  Combines GP hyperparameters into one vector. 
% gpunpak  -  Separates hyperparameter vector into components. 
% gradchek -  Checks a user-defined gradient function using finite differences. 
% graddesc -  Gradient descent optimization. 
% gsamp    -  Sample from a Gaussian distribution. 
% gtm      -  Create a Generative Topographic Map. 
% gtmem    -  EM algorithm for Generative Topographic Mapping. 
% gtmfwd   -  Forward propagation through GTM. 
% gtminit  -  Initialise the weights and latent sample in a GTM. 
% gtmlmean -  Mean responsibility for data in a GTM. 
% gtmlmode -  Mode responsibility for data in a GTM. 
% gtmmag   -  Magnification factors for a GTM 
% gtmpost  -  Latent space responsibility for data in a GTM. 
% gtmprob  -  Probability for data under a GTM. 
% hbayes   -  Evaluate Hessian of Bayesian error function for network. 
% hesschek -  Use central differences to confirm correct evaluation of Hessian matrix. 
% hintmat  -  Evaluates the coordinates of the patches for a Hinton diagram. 
% hinton   -  Plot Hinton diagram for a weight matrix. 
% histp    -  Histogram estimate of 1-dimensional probability distribution. 
% hmc      -  Hybrid Monte Carlo sampling. 
% kmeans   -  Trains a k means cluster model. 
% knn      -  Creates a K-nearest-neighbour classifier. 
% knnfwd   -  Forward propagation through a K-nearest-neighbour classifier. 
% linef    -  Calculate function value along a line. 
% linemin  -  One dimensional minimization. 
% maxitmess-  Create a standard error message when training reaches max. iterations. 
% mdn      -  Creates a Mixture Density Network with specified architecture. 
% mdn2gmm  -  Converts an MDN mixture data structure to array of GMMs. 
% mdndist2 -  Calculates squared distance between centres of Gaussian kernels and data 
% mdnerr   -  Evaluate error function for Mixture Density Network. 
% mdnfwd   -  Forward propagation through Mixture Density Network. 
% mdngrad  -  Evaluate gradient of error function for Mixture Density Network. 
% mdninit  -  Initialise the weights in a Mixture Density Network. 
% mdnpak   -  Combines weights and biases into one weights vector. 
% mdnpost  -  Computes the posterior probability for each MDN mixture component. 
% mdnprob  -  Computes the data probability likelihood for an MDN mixture structure. 
% mdnunpak -  Separates weights vector into weight and bias matrices. 
% metrop   -  Markov Chain Monte Carlo sampling with Metropolis algorithm. 
% minbrack -  Bracket a minimum of a function of one variable. 
% mlp      -  Create a 2-layer feedforward network. 
% mlpbkp   -  Backpropagate gradient of error function for 2-layer network. 
% mlpderiv -  Evaluate derivatives of network outputs with respect to weights. 
% mlperr   -  Evaluate error function for 2-layer network. 
% mlpevfwd -  Forward propagation with evidence for MLP 
% mlpfwd   -  Forward propagation through 2-layer network. 
% mlpgrad  -  Evaluate gradient of error function for 2-layer network. 
% mlphdotv -  Evaluate the product of the data Hessian with a vector. 
% mlphess  -  Evaluate the Hessian matrix for a multi-layer perceptron network. 
% mlphint  -  Plot Hinton diagram for 2-layer feed-forward network. 
% mlpinit  -  Initialise the weights in a 2-layer feedforward network. 
% mlppak   -  Combines weights and biases into one weights vector. 
% mlpprior -  Create Gaussian prior for mlp. 
% mlptrain -  Utility to train an MLP network for demtrain 
% mlpunpak -  Separates weights vector into weight and bias matrices. 
% netderiv -  Evaluate derivatives of network outputs by weights generically. 
% neterr   -  Evaluate network error function for generic optimizers 
% netevfwd -  Generic forward propagation with evidence for network 
% netgrad  -  Evaluate network error gradient for generic optimizers 
% nethess  -  Evaluate network Hessian 
% netinit  -  Initialise the weights in a network. 
% netopt   -  Optimize the weights in a network model. 
% netpak   -  Combines weights and biases into one weights vector. 
% netunpak -  Separates weights vector into weight and bias matrices. 
% olgd     -  On-line gradient descent optimization. 
% pca      -  Principal Components Analysis 
% plotmat  -  Display a matrix. 
% ppca     -  Probabilistic Principal Components Analysis 
% quasinew -  Quasi-Newton optimization. 
% rbf      -  Creates an RBF network with specified architecture 
% rbfbkp   -  Backpropagate gradient of error function for RBF network. 
% rbfderiv -  Evaluate derivatives of RBF network outputs with respect to weights. 
% rbferr   -  Evaluate error function for RBF network. 
% rbfevfwd -  Forward propagation with evidence for RBF 
% rbffwd   -  Forward propagation through RBF network with linear outputs. 
% rbfgrad  -  Evaluate gradient of error function for RBF network. 
% rbfhess  -  Evaluate the Hessian matrix for RBF network. 
% rbfjacob -  Evaluate derivatives of RBF network outputs with respect to inputs. 
% rbfpak   -  Combines all the parameters in an RBF network into one weights vector. 
% rbfprior -  Create Gaussian prior and output layer mask for RBF. 
% rbfsetbf -  Set basis functions of RBF from data. 
% rbfsetfw -  Set basis function widths of RBF. 
% rbftrain -  Two stage training of RBF network. 
% rbfunpak -  Separates a vector of RBF weights into its components. 
% rosegrad -  Calculate gradient of Rosenbrock's function. 
% rosen    -  Calculate Rosenbrock's function. 
% scg      -  Scaled conjugate gradient optimization. 
% som      -  Creates a Self-Organising Map. 
% somfwd   -  Forward propagation through a Self-Organising Map. 
% sompak   -  Combines node weights into one weights matrix. 
% somtrain -  Kohonen training algorithm for SOM. 
% somunpak -  Replaces node weights in SOM. 
%
%	Copyright (c) Ian T Nabney (1996-2001)
%

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本电影欧美片| 亚洲丝袜制服诱惑| 亚洲va欧美va人人爽| 国产一区 二区| 337p日本欧洲亚洲大胆精品| 日本不卡一二三| 日韩欧美一区二区免费| 成人免费毛片aaaaa**| 久久综合九色综合97婷婷女人| 久久99精品久久久久久动态图| 欧美一二三四在线| 久久成人羞羞网站| 久久日一线二线三线suv| 极品少妇一区二区三区精品视频 | 色综合咪咪久久| 亚洲欧美日韩国产手机在线| 色综合久久88色综合天天免费| 一区二区三区国产精华| 欧美日韩一区二区在线观看视频| 天天色图综合网| 日韩欧美国产麻豆| 高清国产一区二区三区| 中文字幕综合网| 欧美人狂配大交3d怪物一区| 蜜桃视频在线一区| 国产日产欧美一区二区视频| 91丝袜美女网| 日韩精品高清不卡| 久久久久久久久一| 日本电影欧美片| 国产一区二区在线观看视频| 国产精品无码永久免费888| 色成年激情久久综合| 日本不卡在线视频| 国产精品毛片无遮挡高清| 欧美日韩一区高清| 国产成人午夜99999| 尤物av一区二区| 欧美xfplay| 色哟哟一区二区在线观看| 美女视频黄a大片欧美| 国产欧美日韩在线看| 欧美日韩一区二区三区不卡| 国产精品一区免费在线观看| 亚洲资源中文字幕| 久久综合给合久久狠狠狠97色69| 色综合视频在线观看| 精品无码三级在线观看视频| 亚洲免费观看高清在线观看| 欧美一区二区播放| 色婷婷激情久久| 国产乱码字幕精品高清av| 一区二区三区中文免费| 久久久久久久久蜜桃| 91精选在线观看| 91麻豆免费在线观看| 九色|91porny| 午夜欧美大尺度福利影院在线看| 亚洲国产精品国自产拍av| 制服丝袜亚洲播放| 色婷婷综合久久久中文字幕| 国产精品综合视频| 日韩精品欧美成人高清一区二区| 专区另类欧美日韩| 国产精品久久久一本精品| 欧美tk—视频vk| 欧美精品乱码久久久久久按摩| jvid福利写真一区二区三区| 波多野结衣在线一区| 国内欧美视频一区二区| 日本va欧美va欧美va精品| 亚洲大片在线观看| 亚洲女同女同女同女同女同69| 久久精品男人天堂av| 欧美成人精品1314www| 欧美一三区三区四区免费在线看| 色猫猫国产区一区二在线视频| 福利一区二区在线| 国产一区999| 国产成人欧美日韩在线电影| 精品亚洲成a人| 激情深爱一区二区| 久久99久久99小草精品免视看| 奇米精品一区二区三区四区| 首页综合国产亚洲丝袜| 偷拍一区二区三区| 日本中文在线一区| 日韩国产欧美在线视频| 视频一区欧美精品| 五月激情六月综合| 蜜芽一区二区三区| 另类欧美日韩国产在线| 久草中文综合在线| 精品一区二区三区日韩| 另类小说色综合网站| 久久99九九99精品| 国产一区二区三区电影在线观看| 国产综合久久久久久久久久久久 | 日韩精品电影在线| 日本aⅴ免费视频一区二区三区 | 欧美巨大另类极品videosbest| 欧美日韩美少妇| 欧美一级黄色大片| 久久综合色天天久久综合图片| 久久综合久久综合久久综合| 欧美国产一区二区| 成人免费一区二区三区视频| 亚洲码国产岛国毛片在线| 一区二区三区产品免费精品久久75| 一区二区三区久久久| 日韩精品一级二级| 国产91综合网| 91搞黄在线观看| 欧美一区2区视频在线观看| 久久综合久久综合亚洲| 亚洲视频一二三区| 婷婷一区二区三区| 国产伦精一区二区三区| 成人久久久精品乱码一区二区三区| 91亚洲国产成人精品一区二三 | 久久精品国产一区二区三 | 日韩av一区二区三区| 激情欧美一区二区| 日本韩国欧美在线| 日韩欧美激情一区| 国产精品理伦片| 视频在线观看国产精品| 国产成人一级电影| 欧美这里有精品| 久久一日本道色综合| 一区二区在线观看av| 奇米色一区二区三区四区| 9色porny自拍视频一区二区| 欧美狂野另类xxxxoooo| 国产精品拍天天在线| 日本成人超碰在线观看| 色婷婷综合中文久久一本| 精品国产一二三区| 亚洲国产三级在线| 成人综合婷婷国产精品久久免费| 欧美日韩中文字幕一区| 国产精品久久久久久一区二区三区 | 久久久久久综合| 亚洲va国产va欧美va观看| 国产98色在线|日韩| 欧美成人一区二区| 韩国精品主播一区二区在线观看 | 蜜桃一区二区三区在线观看| 色综合久久66| 精品国产乱码久久久久久影片| 一级日本不卡的影视| 喷水一区二区三区| 欧美日韩美少妇| 国产精品亲子伦对白| 国产精品中文字幕日韩精品| 在线观看91精品国产麻豆| 亚洲天堂免费在线观看视频| 国产精品主播直播| 91精品综合久久久久久| 亚洲成av人片观看| 99国产精品久久久| 国产亚洲精品精华液| 麻豆成人av在线| 91精品欧美一区二区三区综合在| 亚洲男人电影天堂| 99视频在线精品| 中文字幕一区在线观看视频| 国产一区二区三区精品欧美日韩一区二区三区 | 毛片av一区二区| 欧美精品一二三| 天天色 色综合| 欧美日产国产精品| 亚洲亚洲人成综合网络| 91精品福利在线| 亚洲人吸女人奶水| 91在线国产福利| 亚洲三级免费观看| 色综合色狠狠天天综合色| 亚洲精品中文在线观看| 色综合久久综合| 一区二区三区在线看| 色噜噜久久综合| 亚洲国产中文字幕在线视频综合| 欧美性受极品xxxx喷水| 亚洲一区二区欧美| 欧美精品亚洲二区| 日本系列欧美系列| 日韩一区二区视频在线观看| 欧美a一区二区| 精品久久久久久久人人人人传媒| 久久99精品久久只有精品| 久久久午夜电影| 波多野结衣视频一区| 亚洲精品一二三四区| 欧美精品一二三| 韩国欧美国产一区| 亚洲三级视频在线观看| 欧美日韩精品欧美日韩精品一综合| 偷窥国产亚洲免费视频| 亚洲日本va午夜在线影院|