亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo3.m

?? 進行時頻變換的工具箱
?? M
字號:
%TFDEMO3 Demonstration on linear time-frequency representations.  	 
%	Time-Frequency Toolbox demonstration.
%
%	See also TFDEMO.

%	O. Lemoine - May 1996. 
%	Copyright (c) CNRS.

clc; zoom on; 
echo on;

% The Short-Time Fourier Transform
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% In order to introduce time-dependency in the Fourier transform, a simple
% and intuitive solution consists in pre-windowing the signal x(u) around a
% particular time t, calculating its Fourier transform, and doing that for
% each time instant t. The resulting transform is called the Short-Time 
% Fourier Transform (STFT).
%
% Let us have a look at the result obtained by applying the STFT on a
% speech signal. The signal we consider contains the word 'GABOR' recorded 
% on 338 points with a sampling frequency of 1 kHz (with respect to the 
% Shannon criterion).

echo off
DirectoryStr='';
while (exist([DirectoryStr 'gabor.mat'])==0),
 fprintf('I can''t find %s\n', [DirectoryStr 'gabor.mat']);
 DirectoryStr=input('name of the directory where gabor.mat is : ','s');
end;
eval(['load ' DirectoryStr 'gabor.mat']);
echo on

time=0:337; 
clf; subplot(211); plot(time,gabor); xlabel('Time [ms]'); grid

% Now let us have a look at the Fourier transform of it :

dsp=fftshift(abs(fft(gabor)).^2); subplot(212); 
freq=(-169:168)/338*1000; plot(freq,dsp); xlabel('Frequency [Hz]'); grid

% We can not say from this representation what part of the word is
% responsible for that peak around 140 Hz. 
%
% Press any key to continue...
 
pause; clc;
 
% Now if we look at the squared modulus of the STFT of this signal, 
% using a hamming analysis window of 85 points, we can see some interesting
% features (the time-frequency matrix is loaded from the MAT-file because 
% it takes a long time to be calculated ; we represent only the frequency 
% domain where the signal is present) :
		
clf; tfrsp(gabor,1:338,256,window(61,'hanning'),1); 
% contour(time,(0:127)/256*1000,log10(tfr)); grid
xlabel('Time [ms]'); ylabel('Frequency [Hz]'); 
title('Squared modulus of the STFT of the word GABOR');

% The first pattern in the time-frequency plane, located between 30ms and
% 60ms, and centered around 150Hz, corresponds to the first syllable
% 'GA'. The second pattern, located between 150ms and 250ms, corresponds to
% the last syllable 'BOR', and we can see that its mean frequency is
% decreasing from 140Hz to 110Hz with time. Harmonics corresponding to these
% two fondamental signals are also present at higher frequencies, but with a
% lower amplitude.
%
% Press any key to continue...
 
pause; clc;
 
% To illustrate the tradeoff which exists for the STFT between time and 
% frequency resolutions, whatever is the short time analysis window h, we 
% consider two extreme cases : 
% - the first one corresponds to a perfect time resolution : the analysis 
% window h(t) is chosen as a Dirac impulse :

sig=amgauss(128).*fmlin(128); h=1;
tfrstft(sig,1:128,128,h);

% The signal is perfectly localized in time (a section for a given 
% frequency of the squared modulus of the STFT corresponds exactly to the 
% squared modulus of the signal), but the frequency resolution is null.     
%
% Press any key to continue...
 
pause; 

% - the second is that of perfect frequency resolution , obtained with a
% constant window :

h=ones(127,1);
tfrstft(sig,1:128,128,h);

% Here the STFT reduces to the Fourier transform (except on the sides, 
% because of the finite length of h), and does not provides any time 
% resolution.  
%    
% Press any key to continue...
 
pause; clc

% To illustrate the influence of the shape and length of the analysis
% window h, we consider two transient signals having the same gaussian
% amplitude and constant frequency, with different arrival times :

sig=atoms(128,[45,.25,32,1;85,.25,32,1],0);

% Here is the result obtained with a Hamming analysis window of 65 
% points :

h=window(65,'hamming');
tfrstft(sig,1:128,128,h);

% The frequency-resolution is very good, but it is almost impossible to
% discriminate the two components in time. 
%    
% Press any key to continue...
 
pause; clc

% If we now consider a short Hamming window of 17 points,

h=window(17,'hamming');
tfrstft(sig,1:128,128,h);

% the frequency resolution is poorer, but the time-resolution is 
% sufficiently good to distinguish the two components. 
%    
% Press any key to continue...
 
pause; clc; clf

% The Gabor Representation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~
% The reconstruction (synthesis) formula of the STFT given in the 
% discrete case defines the Gabor representation. Let us consider the 
% Gabor coefficients of a linear chirp of N1=256 points at the critical 
% sampling case, and for a gaussian window of Ng=33 points :

N1=256; Ng=33; Q=1; % degree of oversampling.
sig=fmlin(N1); g=window(Ng,'gauss'); g=g/norm(g);
[tfr,dgr,h]=tfrgabor(sig,16,Q,g);

% (tfrgabor generates as first output the squared modulus of the Gabor
% representation, as second output the complex Gabor representation, and 
% as third output the biorthonormal window). When we look at the
% biorthonormal window h,

plot(h); axis([1 256 -0.3 0.55]); grid; title('Biorthonormal window'); 

% we can see how "bristling" this function is. 
%    
% Press any key to continue...
 
pause; clc

% The corresponding Gabor decomposition contains all the information about 
% sig, but is not easy to interpret :

t=1:16; f=linspace(0,0.5,8); imagesc(t,f,tfr(1:8,:));  grid
xlabel('Time'); ylabel('Normalized frequency'); axis('xy'); 
title('Squared modulus of the Gabor coefficients');

% Press any key to continue...
 
pause;

% If we now consider a degree of oversampling of Q=4 (there are four times
% more Gabor coefficients than signal samples), the biorthogonal function is
% smoother (the bigger Q, the closer h from g),

Q=4; [tfr,dgr,h]=tfrgabor(sig,32,Q,g);
plot(h); title('Biorthonormal window'); axis([1 256 -0.01 0.09]); grid; 

% press any key to continue...
 
pause; 

% and the Gabor representation is much more readable :

t=1:32; f=linspace(0,0.5,16); imagesc(t,f,tfr(1:16,:)); axis('xy'); 
xlabel('Time'); ylabel('Normalized frequency');  grid
title('Squared modulus of the Gabor coefficients');

% Press any key to continue...
 
pause; clc; 

% From atomic decompositions to energy distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The spectrogram
%"""""""""""""""""
% If we consider the squared modulus of the STFT, we obtain a spectral
% energy density of the locally windowed signal x(u) h*(u-t), which 
% defines the spectrogram.
% To illustrate the resolution tradeoff of the spectrogram and its
% interference structure, we consider a two-component signal composed of 
% two parallel chirps :

sig=fmlin(128,0,0.4)+fmlin(128,0.1,0.5);
h1=window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);

h2=window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);

%print -deps EPS/At4fig2

% In these two cases, the signals sig1 and sig2 are not sufficiently 
% distant to have distinct terms in the time-frequency plane, whatever the 
% window length is. Consequently, interference terms are present, and 
% disturb the readability of the time-frequency representation. 
%
% Press any key to continue...
 
pause; clc; 

% If we consider more distant components,

sig=fmlin(128,0,0.3)+fmlin(128,0.2,0.5);
h1=window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);
h2=window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);

% the two auto-spectrograms do not overlap and no interference term
% appear. We can also see the effect of a short window (h1) and a long
% window (h2) on the time-frequency resolution. In the present case, the 
% long window h2 is preferable since as the frequency progression is not
% very fast, the quasi-stationary assumption will be correct over h2 (so 
% time resolution is not as important as frequency resolution in this case) 
% and the frequency resolution will be quite good ; whereas if the window 
% is short (h1), the time resolution will be good, which is not very useful, 
% and the frequency resolution will be poor.
%
% Press any key to continue...
 
pause; clc; close;

% The scalogram
%"""""""""""""""
% A similar distribution to the spectrogram can be defined in the wavelet
% case. The squared modulus of the continuous wavelet transform also 
% defines an energy distribution which is known as the scalogram.
% As for the wavelet transform, time and frequency resolutions of the
% scalogram are related via the Heisenberg-Gabor principle : time and
% frequency resolutions depend on the considered frequency. To illustrate
% this point, we represent the scalograms of two different signals. The
% M-file tfrscalo.m generates this representation. The chosen wavelet is a
% Morlet wavelet of 12 points. The first signal is a Dirac pulse at time
% t0=64 :

sig1=anapulse(128);
tfrscalo(sig1,1:128,6,0.05,0.45,64);

% This figure shows that the influence of the signal's behavior around 
% t=t0 is limited to a cone in the time-scale plane (which is more visible 
% if you choose the logarithmic scale is the menu) : it is "very" localized 
% around t0 for small scales (large frequencies), and less and less 
% localized as the scale increases (as the frequency decreases).
%
% Press any key to continue...
 
pause; clc; 

% The second signal is the sum of two sinusoids of different frequencies :

sig2=fmconst(128,.15)+fmconst(128,.35);
tfrscalo(sig2,1:128,6,0.05,0.45,128);
 
% Here again, we notice that the frequency resolution is clearly a function
% of the frequency : it increases with nu.
%
% Press any key to end this demonstration

pause;
echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美色综合久久| 另类小说综合欧美亚洲| 久久精品一区二区三区av| 在线电影院国产精品| 欧美综合一区二区| 欧美做爰猛烈大尺度电影无法无天| 91看片淫黄大片一级| 972aa.com艺术欧美| 色香蕉久久蜜桃| 日本大香伊一区二区三区| 色综合视频在线观看| 97久久精品人人做人人爽| 91麻豆国产福利在线观看| 色综合色综合色综合| 在线一区二区三区| 欧美区在线观看| 欧美大片日本大片免费观看| 久久精品视频一区二区三区| 国产精品卡一卡二卡三| 一二三区精品视频| 蜜臀av一区二区三区| 国产麻豆精品视频| fc2成人免费人成在线观看播放| 菠萝蜜视频在线观看一区| 91福利在线免费观看| 日韩视频123| 中文字幕亚洲一区二区va在线| 亚洲综合精品久久| 美女在线观看视频一区二区| 国产一区91精品张津瑜| 91香蕉国产在线观看软件| 欧美日韩视频在线观看一区二区三区 | 九色porny丨国产精品| 国产综合久久久久久鬼色| 波多野结衣在线一区| 欧美日韩美少妇| 国产精品女上位| 午夜精品久久久久久久99水蜜桃 | 2020国产精品| 一区二区三区在线观看网站| 精品一区二区精品| 色综合激情久久| 精品久久久久久综合日本欧美| 中文字幕一区免费在线观看| 日韩高清不卡一区二区| 99久久久免费精品国产一区二区 | 91在线国产观看| 欧美一级日韩免费不卡| ...xxx性欧美| 国内精品国产成人国产三级粉色| 在线日韩av片| 久久久亚洲午夜电影| 五月天激情综合| 色婷婷久久久亚洲一区二区三区 | 精品一区二区三区免费视频| 在线观看网站黄不卡| 亚洲国产精品高清| 黑人精品欧美一区二区蜜桃| 欧美久久免费观看| 亚洲一区二区av在线| 97久久人人超碰| 国产日韩精品一区二区三区| 久久国产精品一区二区| 欧美日韩亚洲另类| 亚洲高清在线视频| 欧日韩精品视频| 亚洲国产精品视频| 欧洲一区二区三区免费视频| 亚洲精品视频在线观看网站| 成人在线一区二区三区| 国产欧美一区二区精品性| 国产高清精品久久久久| 久久久久久久久久看片| 九九**精品视频免费播放| 日韩你懂的在线观看| 久久国产乱子精品免费女| 欧美一区二区三区婷婷月色| 蜜臀va亚洲va欧美va天堂| 91精选在线观看| 免费成人美女在线观看| 精品久久五月天| 国产美女一区二区三区| 国产日韩欧美a| 91亚洲精品乱码久久久久久蜜桃| 国产精品久久久久影院色老大| 国产成人亚洲精品青草天美| 国产精品短视频| 99久久精品国产毛片| 亚洲人一二三区| 欧美午夜片在线看| 欧美aaa在线| 日本一区二区动态图| 99热99精品| 亚洲成人av在线电影| 日韩精品专区在线影院观看| 国产成人夜色高潮福利影视| 亚洲欧美视频一区| 欧美老肥妇做.爰bbww视频| 精品国产免费视频| 99国产精品久| 日韩欧美视频在线| 久久激情五月婷婷| 亚洲视频电影在线| 欧美丰满一区二区免费视频| 精品影视av免费| 日本一区二区高清| 欧美高清一级片在线| 国产a级毛片一区| 亚洲香蕉伊在人在线观| 久久一夜天堂av一区二区三区| 风流少妇一区二区| 午夜精品爽啪视频| 欧美国产一区二区在线观看| 精品视频一区二区三区免费| 国产成人精品免费网站| 亚洲国产精品人人做人人爽| 久久精品亚洲精品国产欧美kt∨| 色婷婷av一区二区三区之一色屋| 六月丁香综合在线视频| 亚洲人成精品久久久久| 精品福利av导航| 欧美日韩精品专区| av激情综合网| 国产精品自拍网站| 丝袜亚洲另类欧美| 一区二区三区在线视频免费观看| 26uuu精品一区二区| 欧美日韩国产综合一区二区三区| 国产很黄免费观看久久| 日韩高清一区二区| 一区二区三区中文字幕在线观看| 国产婷婷一区二区| 日韩美女视频在线| 欧美二区在线观看| 色综合激情五月| 99riav一区二区三区| 国产黄人亚洲片| 国模娜娜一区二区三区| 久久se精品一区二区| 日韩电影免费在线观看网站| 1024亚洲合集| 亚洲视频 欧洲视频| 国产精品女同互慰在线看| 久久久久久影视| 欧美精品一区二区三区很污很色的| 555www色欧美视频| 欧美精品v国产精品v日韩精品| 91黄视频在线| 日本韩国一区二区| 91久久一区二区| 欧美浪妇xxxx高跟鞋交| 欧美色视频一区| 欧美酷刑日本凌虐凌虐| 欧美区在线观看| 欧美一级日韩免费不卡| 精品日韩一区二区三区| 精品少妇一区二区| 国产日产亚洲精品系列| 国产欧美日韩视频一区二区| 久久精品网站免费观看| 国产精品久久久久久妇女6080| 国产欧美久久久精品影院| 国产精品九色蝌蚪自拍| 一区二区中文视频| 亚洲女性喷水在线观看一区| 一区二区三区中文字幕| 午夜电影网亚洲视频| 久久精品99国产精品| 成人av午夜影院| 欧美性感一类影片在线播放| 9191精品国产综合久久久久久| 欧美大片拔萝卜| 国产精品久久久久国产精品日日| 自拍偷拍欧美激情| 亚洲成av人**亚洲成av**| 美女mm1313爽爽久久久蜜臀| 国产主播一区二区| 97久久精品人人澡人人爽| 欧美午夜精品免费| 欧美一级在线观看| 亚洲国产精品传媒在线观看| 亚洲一区二区三区三| 精品制服美女久久| 色天天综合久久久久综合片| 欧美一级艳片视频免费观看| 国产人伦精品一区二区| 亚洲一区二区高清| 国产精品一级黄| 欧美丰满一区二区免费视频 | 九九国产精品视频| 成人激情黄色小说| 91麻豆精品91久久久久久清纯| 国产偷国产偷亚洲高清人白洁| 亚洲综合久久久久| 国产成人精品三级| 欧美丰满一区二区免费视频 | 日本久久一区二区| 久久久综合激的五月天| 一区二区三区四区在线| 国产麻豆91精品|