亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo2.m

?? 進行時頻變換的工具箱
?? M
字號:
%TFDEMO2 Non stationary signals

%	O. Lemoine - May 1996. 
%	Copyright (c) CNRS.

clc; zoom on; clf; 
echo on;

% Time and frequency localizations and the Heisenberg-Gabor inequality 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The time and frequency localizations can be evaluated thanks to 
% the M-files loctime.m and locfreq.m of the Toolbox. The first one
% gives the average time center (tm) and the duration (T) of a signal,
% and the second one the average normalized frequency (num) and the 
% normalized bandwidth (B). For example, for a linear chirp with a 
% Gaussian amplitude modulation, we obtain :

sig=fmlin(256).*amgauss(256); 
subplot(211); plot(real(sig)); axis([1 256 -1 1]); grid;
xlabel('Time'); ylabel('Real part'); title('Signal in time');
dsp=fftshift(abs(fft(sig)).^2);
subplot(212); plot((-128:127)/256,dsp); grid;
xlabel('Normalized frequency'); ylabel('Squared modulus'); 
title('Energy spectrum');
[tm ,T]=loctime(sig) 
[num,B]=locfreq(sig)

% Press any key to continue...
 
pause; clc;

% One interesting property of this product T*B is that it is lower
% bounded : T * B >= 1. This constraint, known as the HEISENBERG-GABOR 
% INEQUALITY, illustrates the fact that a signal can not have 
% simultaneously an arbitrarily small support in time and in frequency.
% If we consider a Gaussian signal,

sig=amgauss(256); 
subplot(211); plot(real(sig)); axis([1 256 0 1]); grid;
xlabel('Time'); ylabel('Real part'); title('Signal in time');
dsp=fftshift(abs(fft(sig)).^2);
subplot(212); plot((-128:127)/256,dsp); grid;
xlabel('Normalized frequency'); ylabel('Squared modulus'); 
title('Energy spectrum');
[tm,T]=loctime(sig); 
[fm,B]=locfreq(sig);
[T,B,T*B]

% we can see that it minimizes the time-bandwidth product, and thus is 
% the most concentrated signal in the time-frequency plane.
%
% Press any key to continue...
 
pause; clc;

% Instantaneous frequency and group delay
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The instantaneous frequency, defined for any analytic signal xa(t) as 
% the derivative of its phase, if(t) = 1/(2pi) d arg{xa(t)} / dt, can
% be a good solution to describe a signal simultaneously in time and in 
% frequency :

sig=fmlin(256); t=2:255; clf;
ifr=instfreq(sig); plotifl(t,ifr,sig(t)); grid;
axis([1 256 0 0.5]); xlabel('Time'); ylabel('Normalized frequency'); 
title('Instantaneous frequency estimation');
 
% As we can see from this plot, the instantaneous frequency shows with
% success the local frequency behavior as a function of time. 
%
% Press any key to continue...
 
pause;

% In a dual way, the local time behavior as a function of frequency can 
% be described by the GROUP DELAY : 
%	tx(nu) = -1/(2*pi) * d arg{Xa(nu)}/d nu.
% This quantity measures the average time arrival of the frequency nu. 
% For example, with signal sig of the previous example, we obtain :

fnorm=0:.05:.5; gd=sgrpdlay(sig,fnorm); plot(gd,fnorm); grid;
xlabel('Time'); ylabel('Normalized frequency'); 
title('Group delay estimation'); axis([1 256 0 0.5]);
 
% Press any key to continue...
 
pause; clc;

% Be careful of the fact that in general, instantaneous frequency and 
% group delay define two different curves in the time-frequency plane. 
% They are approximatively identical only when the time-bandwidth product 
% TB is large. To illustrate this point, let us consider a simple example.
% We calculate the instantaneous frequency and group delay of two signals, 
% the first one having a large TB product, and the second one a small TB
% product:

t=2:255; 
sig1=amgauss(256,128,90).*fmlin(256,0,0.5);
[tm,T1]=loctime(sig1); [fm,B1]=locfreq(sig1); T1*B1
ifr1=instfreq(sig1,t); f1=linspace(0,0.5-1/256,256);
gd1=sgrpdlay(sig1,f1); subplot(211); plot(t,ifr1,'*',gd1,f1,'-')
axis([1 256 0 0.5]); grid; xlabel('Time'); 
ylabel('Normalized frequency'); 

sig2=amgauss(256,128,30).*fmlin(256,0.2,0.4);
[tm,T2]=loctime(sig2); [fm,B2]=locfreq(sig2); T2*B2
ifr2=instfreq(sig2,t); f2=linspace(0.2,0.4,256);
gd2=sgrpdlay(sig2,f2); subplot(212); plot(t,ifr2,'*',gd2,f2,'-')
axis([1 256 0.2 0.4]); grid; xlabel('Time'); 
ylabel('Normalized frequency'); 
 
% On the first plot, the two curves are almost superimposed (i.e. the
% instantaneous frequency is the inverse transform of the group delay),
% whereas on the second plot, the two curves are clearly different.
%
% Press any key to continue...
 
pause; clc;

% Synthesis of a mono-component non stationary signal
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% One part of the Time-Frequency Toolbox is dedicated to the generation 
% of non stationary signals. In that part, three groups of M-files are 
% available:
%
%	- The first one allows to synthesize different amplitude
% modulations. These M-files begin with the prefix 'am'. 
%	- The second one proposes different frequency modulations.  These
% M-files begin with 'fm'. 
%	- The third one is a set of pre-defined signals. Some of them begin
% with 'ana' because these signals are analytic, other have special names.
% 
% The first two groups of files can be combined to produce a large class of
% non stationary signals, multiplying an amplitude modulation and a 
% frequency modulation. For example, we can multiply a linear frequency 
% modulation by a gaussian amplitude modulation :

fm1=fmlin(256,0,0.5); am1=amgauss(256);
sig1=am1.*fm1; clf; plot(real(sig1)); axis([1 256 -1 1]); 
xlabel('Time'); ylabel('Real part');
 
% By default, the signal is centered on the middle (256/2=128), and its
% spread is T=32. If you want to center it at an other position t0, just
% replace am1 by amgauss(256,t0). 
%
% Press any key to continue...
 
pause; clc; 

% A second example can be to multiply a pure frequency (constant frequency 
% modulation) by a one-sided exponential window starting at t=100 :

fm2=fmconst(256,0.2); am2=amexpo1s(256,100);
sig2=am2.*fm2; plot(real(sig2)); axis([1 256 -1 1]); 
xlabel('Time'); ylabel('Real part');
 
% Press any key to continue...
 
pause; 

% As a third example of mono-component non-stationary signal, we can 
% consider the M-file doppler.m : this function generates a modelization 
% of the signal received by a fixed observer from a moving target emitting 
% a pure frequency.

[fm3,am3]=doppler(256,200,4000/60,10,50);
sig3=am3.*fm3; plot(real(sig3)); axis([1 256 -0.4 0.4]); 
xlabel('Time'); ylabel('Real part');

% This example corresponds to a target (a car for instance) moving 
% straightly at the speed of 50 m/s, and passing at 10 m from the observer
% (the radar!). The rotating frequency of the engine is 4000 revolutions 
% per minute, and the sampling frequency of the radar is 200 Hz.
%
% Press any key to continue...
 
pause; clc; 

%   In order to have a more realistic modelization of physical signals, we
% may need to add some complex noise on these signals. To do so, two M-files
% of the Time-Frequency Toolbox are proposed : noisecg.m generates a complex
% white or colored Gaussian noise, and noisecu.m, a complex white uniform 
% noise. For example, if we add complex colored Gaussian noise on the signal
% sig1 with a signal to noise ratio of -10 dB,

noise=noisecg(256,.8);
sign=sigmerge(sig1,noise,-10); plot(real(sign)); 
Min=min(real(sign)); Max=max(real(sign));
xlabel('Time'); ylabel('Real part'); axis([1 256 Min Max]); 

% the deterministic signal sig1 is now almost imperceptible from the noise.
%
% Press any key to continue...
 
pause; clc; 


% Multi-component non stationary signals 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
% The notion of instantaneous frequency implicitly assumes that, at each
% time instant, there exists only a single frequency component. A dual
% restriction applies to the group delay : the implicit assumption is that
% a given frequency is concentrated around a single time instant. Thus, if
% these assumptions are no longer valid, which is the case for most of the
% multi-component signals, the result obtained using the instantaneous
% frequency or the group delay is meaningless.
%
% For example, let's consider the superposition of two linear frequency 
% modulations :

N=128; x1=fmlin(N,0,0.2); x2=fmlin(N,0.3,0.5);
x=x1+x2;

% At each time instant t, an ideal time-frequency representation should
% represent two different frequencies with the same amplitude. The results
% obtained using the instantaneous frequency and the group delay are of
% course completely different, and therefore irrelevant :

ifr=instfreq(x); subplot(211); plot(ifr);
xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);
fnorm=0:0.01:0.5; gd=sgrpdlay(x,fnorm); subplot(212); plot(gd,fnorm);
xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);
 
% So these one-dimensional representations, instantaneous frequency and 
% group delay, are not sufficient to represent all the non stationary 
% signals. A further step has to be made towards two-dimensional mixed 
% representations, jointly in time and in frequency. 
%
% Press any key to continue...
 
pause; clc; 

% To have an idea of what can be made with an time-frequency decomposition,
% let's anticipate the following and have a look at the result obtained 
% with the Short Time Fourier Transform :

tfrstft(x); 

% Here two 'time-frequency components' can be clearly seen, located around
% the locus of the two frequency modulations.
%

echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品一区二区久久久| 亚洲欧美另类在线| 激情五月激情综合网| 26uuu另类欧美| 国产福利不卡视频| 亚洲天堂精品在线观看| 欧美熟乱第一页| 久草这里只有精品视频| 日本一区二区三区四区在线视频 | 成人午夜在线播放| 国产精品久久久久久久久免费相片 | 国产在线日韩欧美| 《视频一区视频二区| 色欧美片视频在线观看在线视频| 亚洲国产日日夜夜| 26uuu久久天堂性欧美| 99国产精品久久久久久久久久| 亚洲一区二区欧美激情| 日韩欧美国产一区二区在线播放 | 精品一区二区久久| 国产精品久久久久影院老司 | 亚洲精品一卡二卡| 日韩欧美中文字幕一区| 成人黄色在线网站| 日本不卡一区二区| 国产精品美女久久久久久2018 | 伦理电影国产精品| 国产精品久久久久久福利一牛影视| 欧美性一二三区| 国产91精品露脸国语对白| 亚洲国产成人av网| 日本一区二区三区免费乱视频| 欧美日韩精品一区二区在线播放| 黑人精品欧美一区二区蜜桃 | 日韩精品福利网| 国产精品天干天干在观线| 欧美日韩国产高清一区二区| 国产一区二区久久| 日本欧美一区二区| 亚洲男同1069视频| 久久久精品国产免大香伊| 欧美日本韩国一区| 色综合色综合色综合| 国产.精品.日韩.另类.中文.在线.播放| 一区二区高清在线| 国产精品视频一二| wwwwxxxxx欧美| 欧美老肥妇做.爰bbww| av电影在线观看一区| 国产一区高清在线| 日本三级亚洲精品| 午夜精品久久久久久不卡8050| 国产精品午夜在线| 久久久亚洲精品一区二区三区 | 一卡二卡三卡日韩欧美| 国产午夜精品一区二区三区视频 | 日韩免费性生活视频播放| 欧美视频第二页| 91久久久免费一区二区| 波多野结衣中文字幕一区二区三区 | 性做久久久久久免费观看欧美| 亚洲丝袜美腿综合| 国产精品久久久久久久浪潮网站| 久久精品人人爽人人爽| 欧美zozo另类异族| 日韩精品一区国产麻豆| 欧美一区二区三区视频免费播放 | 麻豆91小视频| 日韩av中文在线观看| 亚洲国产精品欧美一二99| 亚洲伊人伊色伊影伊综合网| 一区二区三区色| 一个色在线综合| 亚洲高清免费视频| 亚洲午夜久久久久久久久电影院| 亚洲精品中文字幕乱码三区| 亚洲人成电影网站色mp4| 亚洲欧美aⅴ...| 一区二区三区四区中文字幕| 亚洲人成在线播放网站岛国| 一区二区三区蜜桃| 午夜精品久久久久久久蜜桃app| 偷拍日韩校园综合在线| 免费视频一区二区| 国产在线观看免费一区| 国产高清精品久久久久| 成人黄色电影在线 | 日韩女优毛片在线| 久久亚洲春色中文字幕久久久| 精品理论电影在线观看| 久久这里只有精品6| 中文av字幕一区| 一区二区国产视频| 免费成人在线播放| 国产.欧美.日韩| 91福利国产精品| 日韩欧美一区二区三区在线| 久久影院视频免费| 日韩理论电影院| 天堂av在线一区| 国产福利视频一区二区三区| 91猫先生在线| 日韩视频在线永久播放| 中文字幕精品在线不卡| 一区二区国产盗摄色噜噜| 美女看a上一区| 成人午夜视频免费看| 欧美在线观看视频一区二区| 日韩欧美在线网站| 综合激情成人伊人| 丝袜美腿亚洲一区二区图片| 国产成人综合在线| 欧美四级电影在线观看| 国产亚洲欧美色| 亚洲电影第三页| 国产成人免费网站| 欧美视频自拍偷拍| 国产日韩精品一区| 日韩精品免费专区| 不卡大黄网站免费看| 日韩手机在线导航| 一区二区三区四区高清精品免费观看| 久久精品av麻豆的观看方式| 色综合久久99| 国产人成亚洲第一网站在线播放| 亚洲综合999| 成人激情av网| www久久久久| 日韩中文字幕一区二区三区| www.日韩大片| 欧美精品一区二区三区一线天视频 | 国产日韩欧美亚洲| 日本欧美久久久久免费播放网| 成人国产精品免费观看| 日韩欧美国产1| 亚洲成人午夜电影| av在线不卡网| 日本一区二区综合亚洲| 精品一区二区三区香蕉蜜桃 | 岛国精品在线播放| 欧美成人vr18sexvr| 亚洲网友自拍偷拍| 色94色欧美sute亚洲线路一久| 久久精品男人的天堂| 久久国产乱子精品免费女| 欧美影院一区二区| 亚洲色图制服丝袜| 懂色av一区二区三区免费观看| 日韩精品一区二区三区在线观看| 亚洲国产成人av网| 欧美影院午夜播放| 亚洲综合色成人| 一本色道久久综合亚洲91 | 伊人色综合久久天天| 成人av免费观看| 国产精品不卡在线观看| 国产.精品.日韩.另类.中文.在线.播放| 欧美成va人片在线观看| 日本 国产 欧美色综合| 欧美一区二区在线视频| 午夜精品久久久久久久蜜桃app | 欧美成人三级电影在线| 奇米888四色在线精品| 欧美一区二区视频观看视频| 亚洲6080在线| 制服.丝袜.亚洲.另类.中文| 日韩av在线播放中文字幕| 欧美精品黑人性xxxx| 婷婷久久综合九色综合绿巨人 | 高清在线观看日韩| 中文字幕欧美国产| 成人丝袜高跟foot| 亚洲国产经典视频| av电影在线观看不卡| 亚洲视频一区在线| 欧美性色综合网| 午夜精品久久久久久不卡8050| 91精品国产品国语在线不卡| 久久99精品久久久久| 国产日韩精品视频一区| 91丨九色丨蝌蚪富婆spa| 亚洲二区在线观看| 日韩一区二区在线免费观看| 精品在线播放午夜| 国产日韩精品一区二区浪潮av| 成人高清伦理免费影院在线观看| 亚洲欧美日韩国产综合在线| 欧美日韩卡一卡二| 久久精品国产一区二区三区免费看| 精品国产91亚洲一区二区三区婷婷| 国产精品一二三区| 亚洲天堂免费在线观看视频| 欧美日韩精品二区第二页| 久久成人综合网| 国产精品免费av| 精品视频一区三区九区| 国内精品久久久久影院薰衣草| 中文字幕国产精品一区二区| 精品视频资源站| 国产a区久久久|