?? demo2.m
字號:
%% settings
M=3; % number of Gaussian
N=8192; % total number of data samples
th=1e-3; % convergent threshold
Nit=200; % maximal iteration
Nrep=10; % number of repetation to find global maximal
K=2; % demention of output signal
pi=3.141592653589793; % in case it is overwriten by smae name variable
cond_num =100; % prevent the singular covariance matrix in simulation data
plot_flag=1;
print_flag=1;
%% paramethers for random signal genrator
% random parameters for M Gaussian signals
mu_real = randn(K,M)*4; % mean
cov_real =zeros(K,K,M); % covariance matrix
covd_real=zeros(K,K,M); % covariance matrix decomposition
for cm=1:M
while 1
covd_real(:,:,cm)=randn(K,K)/4;
cov_real(:,:,cm)=covd_real(:,:,cm)*covd_real(:,:,cm)';
if cond(cov_real(:,:,cm))>cond_num
continue;
else
break;
end
end
end
% probablilty of a channel being selected
a_real = abs(randn(M,1));
a_real = a_real/sum(a_real); % normlize
if print_flag==1
a_real
mu_real
cov_real
end
%% generate random sample of Gaussian vectors
m=randdist(1,N,[1:M],a_real); % selector
x=randn(K,N);
for c=1:N
sel=m(c);
x(:,c)=covd_real(:,:,sel)*x(:,c)+mu_real(sel);
end
%% EM Algorothm
% loop
f_best=-inf;
for crep=1:Nrep
c=1;
% initial values of parameters for EM
a=abs(randn(M,1)); % randomly generated
a=a/sum(a); % normlize, such that sum(a_EM)=1
mu=randn(K,M);
cov =zeros(K,K,M); % covariance matrix
covd=zeros(K,K,M); % covariance matrix decomposition
for cm=1:M
while 1
covd(:,:,cm)=randn(K,K);
cov(:,:,cm)=covd(:,:,cm)*covd(:,:,cm)';
if cond(cov(:,:,cm))>cond_num
continue;
else
break;
end
end
end
% iteration to find local maxima
break_flag=0;
while 1
a_old= a;
mu_old= mu;
cov_old=cov;
fprintf(1,'calculating probability pmx...\n');
pause(0);
% pmx(m,x|param)
pmx=zeros(M,N);
for cm=1:M
cov_cm=cov(:,:,cm);
if cond(cov_cm) > cond_num
break_flag=1;
end
inv_cov_cm=inv(cov_cm);
mu_cm=mu(:,cm);
for cn=1:N
p_cm=exp(-0.5*(x(:,cn)-mu_cm)'*inv_cov_cm*(x(:,cn)-mu_cm));
pmx(cm,cn)=p_cm;
end
pmx(cm,:)=pmx(cm,:)/sqrt(det(cov_cm));
end
pmx=pmx*(2*pi)^(-K/2);
fprintf(1,'calculating conditional probability, p...\n');
pause(0);
% conditional probability p(m|x,param) for estimated parameters
p=pmx./kron(ones(M,1),sum(pmx));
fprintf(1,'updating parametres\n');
pause(0);
a = 1/N*sum(p')';
mu = 1/N*x*p'*diag(1./a);
for cm=1:M
a_cm=a(cm);
mu_cm=mu(:,cm);
tmp=x-kron(ones(1,N),mu_cm);
cov(:,:,cm)=1/N*(kron(ones(K,1),p(cm,:)).*tmp)*tmp'*diag(1./a_cm);
end
t=max([norm(a_old(:)-a(:))/norm(a_old(:));
norm(mu_old(:)-mu(:))/norm(mu_old(:));
norm(cov_old(:)-cov(:))/norm(cov_old(:))]);
if print_flag==1
fprintf('c=%04d: t=%f\n',c,t);
c=c+1;
end
if t<th
break;
end
if c>Nit
disp('reach maximal iteration')
break;
end
if break_flag==1
disp('***** break on singular covariance matrix *****');
break;
end
end
f=sum(log(sum(pmx.*kron(ones(1,N),a))));
if f>f_best
a_best=a;
mu_best=mu;
cov_best=cov;
f_best=f
end
end
%% plot all
% for 2D (K=2) only
x1_vect=-1:0.02:1;
x2_vect=-1:0.02:1;
px=zeros(length(x1_vect), length(x2_vect));
for c1=1:length(x1_vect)
for c2=1:length(x2_vect)
for cm=1:3
cov_real_cm=cov_real(:,:,cm);
mu_real_cm=mu_real(:,cm);
a_real_cm=a_real(cm);
x_cm=[x1_vect(c1);
x2_vect(c2)];
pm=a_real_cm*(2*pi)^(-0.5*K)*det(cov_real_cm)^(-0.5)*exp(-0.5*x_cm'*inv(cov_real_cm)*x_cm);
px(c1,c2)=px(c1,c2)+pm;
end
end
end
px_hat=zeros(length(x1_vect), length(x2_vect));
for c1=1:length(x1_vect)
for c2=1:length(x2_vect)
for cm=1:3
cov_cm=cov(:,:,cm);
mu_cm=mu(:,cm);
a_cm=a(cm);
x_cm=[x1_vect(c1);
x2_vect(c2)];
pm=a_cm*(2*pi)^(-0.5*K)*det(cov_cm)^(-0.5)*exp(-0.5*x_cm'*inv(cov_cm)*x_cm);
px_hat(c1,c2)=px_hat(c1,c2)+pm;
end
end
end
figure(1); clf; hold on;
mesh(x1_vect, x2_vect, px)
figure(2); clf; hold on;
mesh(x1_vect, x2_vect, px_hat)
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -