亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? crossvalidate.m

?? 這是SVM MATLAB 工具包
?? M
字號:
function [cost,costs,output] = crossvalidate(model, X,Y, L, estfct,combinefct, corrected,trainfct,simfct)% Estimate the model performance of a model with [$ l$] -fold crossvalidation%% >> cost = crossvalidate({Xtrain,Ytrain,type,gam,sig2}, Xval, Yval)% >> cost = crossvalidate( model, Xval, Yval)% % The data is once permutated randomly, then it is divided into L% (by default 10) disjunct sets. In the i-th (i=1,...,l) iteration,% the i-th set is used to estimate the performance ('validation% set') of the model trained on the other l-1 sets ('training% set'). At last, the l (denoted by L) different estimates of the% performance are combined (by default by the 'mean'). The% assumption is made that the input data are distributed% independent and identically over the input space. As additional% output, the costs in the different folds ('costs') and all% residuals ('ec') of the data are returned:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval)% % By default, this function will call the training (trainlssvm) and% simulation (simlssvm) algorithms for LS-SVMs. However, one can% use the validation function more generically by specifying the% appropriate training and simulation function. Some commonly used criteria are:% % >> cost = crossvalidate(model, Xval, Yval, 10, 'misclass', 'mean', 'corrected')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mse', 'mean', 'original')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mae', 'median', 'corrected')% % Full syntax% %     1. Using LS-SVMlab with the functional interface:% % >> [cost, costs, ec] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess},Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         X             : Training input data used for defining the LS-SVM and the preprocessing%         Y             : Training output data used for defining the LS-SVM and the preprocessing%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xval          : N x d matrix with the inputs of the data used for cross-validation%         Yval          : N x m matrix with the outputs of the data used for cross-validation%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     2. Using the object oriented interface:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the LS-SVM model%         Xval          : Nt x d matrix with the inputs of the validation points used in the procedure%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     3. Using other modeling techniques::% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction, trainfct, simfct)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : l x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the model%         Xval          : Nt x d matrix with the inputs of the validation points used%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'%         trainfct      : Function used to train the model%         simfct        : Function used to simulate test data with the model% % See also:% validate, leaveoneout, leaveoneout_lssvm, trainlssvm, simlssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialisation and defaults%if size(X,1)~=size(Y,1), error('X and Y have different number of datapoints'); end[nb_data,y_dim] = size(Y);% LS-SVMlabeval('model = initlssvm(model{:});',' ');eval('L;','L=min(ceil(model.nb_data/4),10);');eval('estfct;','estfct=''mse'';');eval('combinefct;','combinefct=''mean'';');eval('trainfct;','trainfct=''trainlssvm'';');eval('simfct;','simfct=''simlssvm'';');eval('corrected;','corrected=''original'';');%% make a random permutation of the data%px = zeros(size(X));py = zeros(size(Y));if L==nb_data, p = 1:nb_data; else p = randperm(nb_data); endfor i=1:nb_data,  px(i,:) = X(p(i),:);  py(i,:) = Y(p(i),:);end;block_size = floor(nb_data/L);%%initialize: no incremental  memory allocation%err = zeros(L,1);corr2 = zeros(L,1);costs = zeros(L,1);output = zeros(size(Y));%%% start loop over l validations%for l = 1:L,    % divide in data and validation set, trainings data set is a copy  % of permutated_data, validation set is just a logical index   if l==L,    train = [1:block_size*(l-1)];    validation = block_size*(l-1)+1:nb_data;  else    train = [1:block_size*(l-1) block_size*l+1:nb_data];    validation = block_size*(l-1)+1:block_size*l;  end    % lets invert this...eXtreme cv  %validation = [1:block_size*(l-1) block_size*l+1:nb_data];  %train = block_size*(l-1)+1:block_size*l;  %disp([num2str(l) ': |trainset|' num2str(length(train)) ' & |test| ' num2str(length(validation))]);      %costs(l) = validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);  [costs(l), modell,output(p(validation),:)] = ...      validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);    %  % calculate correction term 2: MSE(f_data, error_wholedata)  % try to reuse the previously calculated model  %  if corrected(1) =='c',    eval('errors = feval(simfct, modell, px) - py;corr2(l) = feval(estfct, errors);',...	 'corr2(l) = validate(model, px(train,:), py(train,:), px, py,estfct, trainfct, simfct);');  endend % end loop over l validations%%% misclassifications%sc = find(costs~=inf & costs~=NaN);ff=zeros(size(costs)); ff(sc)=costs(sc);costs=ff;sc = find(corr2~=inf & corr2~=NaN);ff=zeros(size(corr2)); ff(sc)=corr2(sc);corr2=ff;%% calculate the final costs%if corrected(1)=='c',  % calculate correction term 1: MSE(f_wholedata, error_wholedata)  corr1 = validate(model,X, Y,  X, Y,  estfct, trainfct, simfct);  if corr1==inf | corr2==NaN, corr1=0; end  cost = feval(combinefct, costs)+corr1-feval(combinefct,corr2);else  cost = feval(combinefct, costs);end;	  fprintf('\n');	%file = [num2str(cost) '_costsLSSVM_{' num2str(model.gam(1)) ',' num2str(model.kernel_pars(1)) '}.mat'];%save L1costs costs;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成人免费视| 懂色av噜噜一区二区三区av| 美女视频第一区二区三区免费观看网站| 国产乱码精品一区二区三区av | av一区二区三区黑人| 51精品秘密在线观看| 一区免费观看视频| 国模大尺度一区二区三区| 91福利社在线观看| 中文字幕精品—区二区四季| 亚洲在线观看免费| 成人黄色电影在线| 亚洲精品一区在线观看| 午夜久久电影网| 91麻豆精品秘密| 欧美国产乱子伦| 黄一区二区三区| 日韩欧美综合一区| 五月激情综合婷婷| 91福利区一区二区三区| 一色桃子久久精品亚洲| 国产69精品久久777的优势| 欧美一区二区免费视频| 五月婷婷另类国产| 欧美性猛交xxxxxxxx| 一区二区三区四区乱视频| 国产精品18久久久久久久久| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 2019国产精品| 久久精品国内一区二区三区| 91精品国产综合久久久久| 午夜亚洲国产au精品一区二区| 色偷偷成人一区二区三区91| 亚洲免费观看高清完整| 91日韩一区二区三区| 亚洲精品videosex极品| 在线免费观看视频一区| 亚洲无人区一区| 欧美日本国产视频| 免费不卡在线观看| 欧美v日韩v国产v| 国产精品亚洲第一区在线暖暖韩国 | 精品奇米国产一区二区三区| 精品一区二区三区在线播放 | 国产精品嫩草99a| 99精品久久久久久| 一区二区三区在线视频播放| 欧美三级三级三级| 日本不卡一二三区黄网| 精品粉嫩超白一线天av| 国产传媒欧美日韩成人| 亚洲欧洲精品成人久久奇米网 | 国产真实乱偷精品视频免| www一区二区| 成人av在线资源网| 亚洲精品中文字幕乱码三区| 欧美三级电影在线看| 免费成人性网站| 国产亚洲视频系列| 91香蕉国产在线观看软件| 午夜电影一区二区| 久久婷婷成人综合色| 色综合久久中文综合久久97| 亚洲国产精品久久久久秋霞影院| 欧美不卡一区二区三区| eeuss鲁片一区二区三区在线观看| 亚洲综合男人的天堂| 欧美一级国产精品| 成人听书哪个软件好| 亚洲影视资源网| 久久这里只有精品首页| 色综合久久中文综合久久牛| 秋霞电影网一区二区| 中文字幕中文字幕中文字幕亚洲无线| 欧美色网站导航| 成人在线视频首页| 天天色综合天天| 亚洲欧洲一区二区在线播放| 欧美一区二区在线观看| 97久久精品人人做人人爽| 久久99国产精品久久99果冻传媒| ㊣最新国产の精品bt伙计久久| 日韩视频在线一区二区| 91论坛在线播放| 国产suv精品一区二区6| 日本网站在线观看一区二区三区 | 久久一区二区视频| 欧美性感一类影片在线播放| 岛国精品一区二区| 久久精品国产在热久久| 午夜成人免费电影| 亚洲免费在线电影| 日本一区二区视频在线| 日韩网站在线看片你懂的| 欧美色综合影院| 色综合咪咪久久| 国产精品99久久久久| 美女网站色91| 首页国产欧美久久| 亚洲午夜激情网站| 亚洲欧美日韩国产综合| 国产精品精品国产色婷婷| 久久先锋影音av| 久久伊人中文字幕| 欧美成人精精品一区二区频| 欧美一区二区黄色| 欧美精选一区二区| 在线播放中文一区| 欧美日韩久久一区| 欧美色电影在线| 欧美三级资源在线| 欧美日韩免费不卡视频一区二区三区| 在线观看日韩av先锋影音电影院| 91麻豆国产香蕉久久精品| 99re热这里只有精品视频| 97国产精品videossex| 99久久综合色| 色八戒一区二区三区| 色悠久久久久综合欧美99| 色系网站成人免费| 91国产福利在线| 欧美二区乱c少妇| 日韩网站在线看片你懂的| 日韩欧美黄色影院| 久久久噜噜噜久噜久久综合| 久久久久久亚洲综合| www国产精品av| 国产精品免费免费| 有坂深雪av一区二区精品| 亚洲一区二区三区三| 午夜成人免费视频| 久久69国产一区二区蜜臀| 国精产品一区一区三区mba视频| 国产盗摄一区二区三区| 成人动漫视频在线| 欧美日韩一区二区在线观看视频 | 色综合久久综合| 欧美日本一区二区三区四区| 91精品国产欧美一区二区18| 欧美大片国产精品| 中文字幕电影一区| 亚洲午夜精品久久久久久久久| 日日夜夜免费精品视频| 国产最新精品精品你懂的| 成人动漫精品一区二区| 欧美网站大全在线观看| 精品日韩99亚洲| 18涩涩午夜精品.www| 青青草精品视频| 懂色av一区二区三区免费观看| 欧美在线观看视频一区二区| 日韩精品一区二区在线观看| 成人欧美一区二区三区小说| 视频一区二区三区中文字幕| 国产成人亚洲精品狼色在线| 欧美专区在线观看一区| 久久影院午夜论| 亚洲香蕉伊在人在线观| 国产黄人亚洲片| 欧美乱妇23p| 国产精品久久久久aaaa樱花| 视频一区国产视频| 99亚偷拍自图区亚洲| 日韩欧美黄色影院| 亚洲美腿欧美偷拍| 国产精品影视天天线| 精品视频123区在线观看| 国产亲近乱来精品视频| 日韩一区欧美二区| 91免费看视频| 久久久噜噜噜久久中文字幕色伊伊| 亚洲国产日韩精品| 成人午夜激情片| 久久亚洲综合色| 日本成人在线网站| 在线观看免费成人| 国产精品天天摸av网| 精品一区二区三区免费毛片爱 | 亚洲一区二区精品视频| 成人中文字幕在线| 久久影院电视剧免费观看| 日韩av中文在线观看| 在线观看国产日韩| 亚洲精品视频一区| av成人免费在线| 国产欧美一区二区精品性色| 美女视频黄 久久| 欧美一区二区三区免费大片 | 国产精品毛片a∨一区二区三区| 老司机一区二区| 日韩欧美精品在线| 美女在线视频一区| 日韩一卡二卡三卡四卡| 天天操天天色综合| 欧美日韩亚洲国产综合| 亚洲成年人网站在线观看| 在线观看91精品国产入口| 亚洲影视资源网| 欧美美女一区二区三区| 日韩成人精品在线|