亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme.txt

?? Symbolic Representations of Time Series... SAX is just as good as other representations, or working
?? TXT
字號:
--------------------------------------------------------------------------------------------------
Copyright and terms of use (DO NOT REMOVE):

The code is made freely available for non-commercial uses only, provided that the copyright 
header in each file not be removed, and suitable citation(s) (see below) be made for papers 
published based on the code.

The code is not optimized for speed, and we are not responsible for any errors that might
occur in the code.

The copyright of the code is retained by the authors.  By downloading/using the code you
agree to all the terms stated above.

   Lin, J., Keogh, E., Lonardi, S. & Chiu, B. 
   "A Symbolic Representation of Time Series, with Implications for Streaming Algorithms." 
   In proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and 
   Knowledge Discovery. San Diego, CA. June 13, 2003. 


   Lin, J., Keogh, E., Patel, P. & Lonardi, S. 
   "Finding Motifs in Time Series". In proceedings of the 2nd Workshop on Temporal Data Mining, 
   at the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 
   Edmonton, Alberta, Canada. July 23-26, 2002

Copyright (c) 2003, Eamonn Keogh, Jessica Lin, Stefano Lonardi, Pranav Patel. All rights reserved.


Please direct all questions or comments to jessica@cs.ucr.edu and eamonn@cs.ucr.edu
--------------------------------------------------------------------------------------------------



--------------------
timeseries2symbol.m:
--------------------
 
This function takes in a time series and convert it to string(s).
 There are two options:
   1. Convert the entire time series to ONE string
   2. Use sliding windows, extract the subsequences and convert these subsequences to strings

 For the first option, simply enter the length of the time series as "N"
   ex. We have a time series of length 32 and we want to convert it to a 8-symbol string,
       with alphabet size 3:
       timeseries2symbol(data, 32, 8, 3)
 For the second option, enter the desired sliding window length as "N"
   ex. We have a time series of length 32 and we want to extract subsequences of length 16 using
       sliding windows, and convert the subsequences to 8-symbol strings, with alphabet size 3:
       timeseries2symbol(data, 16, 8, 3)
 

 Input:
   data              is the raw time series. 
   N                 is the length of sliding window (use the length of the raw time series
                     instead if you don't want to have sliding windows)
   n                 is the number of symbols in the low dimensional approximation of the sub sequence.
   alphabet_size     is the number of discrete symbols. 2 <= alphabet_size <= 10, although alphabet_size = 2 is a 
		     special "useless" case.

 Output:
   symbolic_data:    matrix of symbolic data (no-repetition).  If consecutive subsequences
                     have the same string, then only the first occurrence is recorded, with
                     a pointer to its location stored in "pointers"
   pointers:         location of the first occurrences of the strings

 N/n must be an integer, otherwise the program will give a warning, and abort.

 The variable "win_size" is assigned to N/n, this is the number of data points on the raw 
 time series that will be mapped to a single symbol, and can be imagined as the 
 "compression rate".

 The symbolic data is returned in "symbolic_data", with pointers to the subsequences  

----------
min_dist.m
----------

 This function computes the minimum (lower-bounding) distance between two strings.  The strings
 should have equal length.
   Input:
       str1: first string
       str2: second string
       alphabet_size: alphabet size used to construct the strings
       compression_ratio: original_data_len / symbolic_len
   Output:
       dist: lower-bounding distance

   usage: dist = min_dist(str1, str2, alphabet_size, compression_ratio)

 This distance measure is not the best measure to use for comparing strings,
 if you are NOT going to follow up with access to the original data. This is
 because it cannot discriminate between two strings that differ only in the
 ith place, by consecutive symbols.  For example the min_dist between 'abba'
 and  'abbb' is zero.
 However, in practice, the min_dist function works very well for
 classification and clustering, even when you do not follow up with access to
 the original data. See [1].


---------
sax_demo:
---------

This code demonstrates the first case described in timeseries2symbol.m (for the
second case, see the example below). It provides a step-by-step demo of SAX 
(Symbolic Aggregate approXimation).  Press enter for the next step.

   usage: [str] = sax_demo
          [str] = sax_demo(data)


--------------
mindist_demo.m
--------------

  This function demonstrates that min_dist lower-bounds the true Euclidean distance.
Suppose there are two time series A and B.  The demo shows the euclidean distance
and the mindist.


>> mindist_demo

sax_version_of_A =

     3     4     2     1     1     3     4     2


sax_version_of_B =

     1     1     3     4     3     1     1     4


euclidean_distance_A_and_B =

   10.9094


ans =

    5.3600				---> This is the mindist



-----------------
symbolic_visual.m
-----------------

This demo presents a visual comparison between SAX and PAA and shows how SAX can represent
data in finer granularity while using the same, if not less, amount of space as PAA.
 
The input parameter [data] is optional.  The default # of PAA segments is 16, and the alphabet
size is 4.




--------
Examples:
--------

You can type this up in your matlab:

Recall that there are two options for timeseries2symbol.  The first option is demonstrated in
sax_demo.m


Now here is an example of the latter. We are going to convert time series of
length 50, with a sliding window of 32, into 8 symbols, with and alphabet
size of 3.

>> [symbolic_data, pointers] = timeseries2symbol(long_time_series,32,8,alphabet_size)
symbolic_data =
     1     1     3     3     3     3     1     1
     1     2     3     3     3     2     1     1
     1     3     3     3     3     1     1     1
     2     3     3     3     2     1     1     1
     3     3     3     3     1     1     1     1
     3     3     3     2     1     1     1     2
     3     3     3     1     1     1     1     3
     3     3     2     1     1     1     2     3
     3     3     1     1     1     1     3     3
     3     2     1     1     1     2     3     3
pointers =
     1
     2
     5
     6
     9
    10
    13
    14
    17
    18

Note that each row corresponds to a subsequence (with overlap)

The SAX word at 3 and 4 were omitted, since they where the same as the word
at 2, same for 7 and 8, which were the same as 6 etc (look at the pointers)

It might be helpful to view the data this way

>> [pointers symbolic_data ]
ans =
     1     1     1     3     3     3     3     1     1
     2     1     2     3     3     3     2     1     1
     5     1     3     3     3     3     1     1     1
     6     2     3     3     3     2     1     1     1
     9     3     3     3     3     1     1     1     1
    10     3     3     3     2     1     1     1     2
    13     3     3     3     1     1     1     1     3
    14     3     3     2     1     1     1     2     3
    17     3     3     1     1     1     1     3     3
    18     3     2     1     1     1     2     3     3


So the first word is (1     1     3     3     3     3     1     1) , 
   the 9th word is (3     3     3     3     1     1     1     1)  , 
   the 14 word is (3 	3     2     1     1     1     2     3)





--------------

[1] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. 
   "A Symbolic Representation of Time Series, with Implications for Streaming Algorithms." 
   In proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and 
   Knowledge Discovery. San Diego, CA. June 13, 2003. 

[2] Lin, J., Keogh, E., Patel, P. & Lonardi, S. 
   "Finding Motifs in Time Series". In proceedings of the 2nd Workshop on Temporal Data Mining, 
   at the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 
   Edmonton, Alberta, Canada. July 23-26, 2002

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产清纯美女被跳蛋高潮一区二区久久w | 夜夜揉揉日日人人青青一国产精品| 国产在线播放一区三区四| 亚洲精品一区二区三区福利| 国产成人午夜电影网| ...xxx性欧美| 欧美性生活大片视频| 日韩黄色免费电影| 久久久综合网站| 色综合久久99| 五月婷婷久久综合| 精品国产免费视频| av电影天堂一区二区在线| 亚洲精品中文在线| 日韩欧美一二三四区| 豆国产96在线|亚洲| 亚洲午夜精品在线| www精品美女久久久tv| 成人免费视频caoporn| 亚洲图片欧美色图| 久久久久久久综合狠狠综合| 日本韩国欧美一区| 麻豆成人在线观看| 亚洲免费av在线| 精品三级av在线| 日本高清视频一区二区| 久久99精品久久久久婷婷| 成人免费在线视频| 欧美xxx久久| 色老综合老女人久久久| 久久99精品久久久久久国产越南 | 97久久超碰精品国产| 日本亚洲欧美天堂免费| 国产精品久久久久婷婷| 在线成人免费视频| 91在线视频观看| 国产精品一区三区| 天天做天天摸天天爽国产一区| 国产亚洲一区二区三区四区| 欧美午夜精品久久久久久超碰| 国产一二精品视频| 日韩中文字幕亚洲一区二区va在线 | 91久久国产最好的精华液| 另类成人小视频在线| 夜夜精品视频一区二区| 日本一二三四高清不卡| 日韩一区和二区| 欧美午夜精品久久久| fc2成人免费人成在线观看播放| 美国毛片一区二区三区| 午夜免费欧美电影| 亚洲精品伦理在线| 国产精品国产三级国产普通话三级| 日韩欧美亚洲国产另类| 欧美日韩国产免费一区二区 | 在线视频你懂得一区| 国产成人综合在线观看| 久久不见久久见中文字幕免费| 亚洲一区二区三区四区中文字幕| 欧美激情在线看| 国产亚洲欧美在线| 精品久久人人做人人爱| 日韩欧美一级在线播放| 777色狠狠一区二区三区| 在线免费观看视频一区| av亚洲精华国产精华| 成人av综合在线| 成人午夜在线免费| 国产成人欧美日韩在线电影| 国产一区久久久| 裸体健美xxxx欧美裸体表演| 日韩在线观看一区二区| 香蕉av福利精品导航| 亚洲综合一区在线| 亚洲午夜精品在线| 婷婷开心激情综合| 日日夜夜精品视频免费| 午夜欧美2019年伦理| 亚洲成人福利片| 日韩av在线发布| 91在线无精精品入口| 成人深夜福利app| 成人午夜免费电影| 91视频免费观看| 欧美性生活一区| 欧美一区二区三区在线| 精品国产自在久精品国产| 精品成人在线观看| 中文字幕精品—区二区四季| 国产精品国产a| 樱桃视频在线观看一区| 亚洲第一成人在线| 麻豆成人免费电影| 成人午夜视频在线观看| 91丨porny丨户外露出| 在线观看精品一区| 日韩欧美在线123| 久久精品日产第一区二区三区高清版| 国产欧美一区二区精品忘忧草| ●精品国产综合乱码久久久久| 一区二区三区中文字幕电影 | 欧美肥妇bbw| 久久久亚洲精品一区二区三区| 国产精品女主播av| 亚洲电影你懂得| 国产真实乱子伦精品视频| 成人美女视频在线观看| 欧美日韩精品一区二区三区| 精品区一区二区| 中文字幕一区二区日韩精品绯色| 香蕉久久夜色精品国产使用方法 | 久久蜜桃av一区精品变态类天堂 | 日本电影欧美片| 91精品国产欧美一区二区18| 中文字幕精品在线不卡| 亚洲一区av在线| 国产一区在线视频| 欧美日韩一卡二卡三卡| 久久欧美一区二区| 亚洲国产成人av网| 大白屁股一区二区视频| 91麻豆精品国产综合久久久久久| 久久久久国产成人精品亚洲午夜| 一区二区三区中文字幕精品精品| 久久精品99国产精品日本| 一本大道av伊人久久综合| 精品日韩一区二区三区| 亚洲一区二区三区影院| 成人一区二区在线观看| 日韩欧美一级精品久久| 亚洲精品久久久蜜桃| 国产成人日日夜夜| 日韩欧美精品三级| 亚洲午夜久久久久久久久电影院 | 五月天国产精品| 99久久久精品免费观看国产蜜| 日韩欧美一区二区在线视频| 一卡二卡三卡日韩欧美| 不卡一二三区首页| 亚洲精品一区二区三区四区高清| 亚洲电影中文字幕在线观看| 成人国产精品视频| 久久一区二区三区四区| 日韩电影一二三区| 欧美日韩国产经典色站一区二区三区| 中文字幕欧美国产| 国产一区二区福利视频| 亚洲伦理在线精品| 国产成人av在线影院| 欧美成人a∨高清免费观看| 五月综合激情网| 欧美亚洲高清一区| 亚洲精品成人少妇| 99久久精品国产毛片| 国产精品久久久久久亚洲伦| 国产高清精品网站| 久久在线观看免费| 国产精品99久| 久久精品水蜜桃av综合天堂| 久久精品国产999大香线蕉| 正在播放一区二区| 肉肉av福利一精品导航| 91精品国产综合久久福利软件| 视频一区二区国产| 欧美疯狂做受xxxx富婆| 天天色天天操综合| 在线91免费看| 免费成人结看片| 日韩亚洲欧美高清| 久久99精品久久久久婷婷| 日韩久久精品一区| 久久国产精品露脸对白| 精品日韩99亚洲| 国产精品主播直播| 国产日韩精品一区二区三区在线| 国产精品中文字幕日韩精品| 国产欧美日韩三级| av中文一区二区三区| 亚洲女同一区二区| 精品视频一区 二区 三区| 亚欧色一区w666天堂| 欧美一级片在线看| 国产一区二区三区综合| 国产精品网站一区| 一本到三区不卡视频| 亚洲国产精品一区二区久久| 欧美人成免费网站| 韩国中文字幕2020精品| 欧美激情一区二区三区在线| 91麻豆国产福利在线观看| 亚洲第一福利视频在线| 欧美精品一区视频| 成人精品鲁一区一区二区| 亚洲精品国产a| 日韩一级黄色大片| 99久久久久久99| 日本vs亚洲vs韩国一区三区| 国产亚洲视频系列| 欧美三级蜜桃2在线观看| 看电影不卡的网站|