亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? plotlssvm.m

?? 一種基于matlab的支持向量機小例子
?? M
字號:
function model = plotlssvm(model,ab,grain, princdim)% Plot the LS-SVM results in the environment of the training data% % >> plotlssvm({X,Y,type,gam, sig2, kernel})% >> plotlssvm({X,Y,type,gam, sig2, kernel}, {alpha,b})% >> model = plotlssvm(model)% % The first argument specifies the LS-SVM. The latter specifies the% results of the training if already known. Otherwise, the training% algorithm is first called. One can specify the precision of the% plot by specifying the grain of the grid. By default this value% is 50. The dimensions (seldims) of the input data to display can% be selected as an optional argument in case of higher dimensional% inputs (> 2). A grid will be taken over this dimension, while the% other inputs remain constant (0).%  %% Full syntax% %     1. Using the functional interface:% % >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b})% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain, seldims)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess})% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [],      , grain)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [],      , grain, seldims)% %       Inputs    %         X             : N x d matrix with the inputs of the training data%         Y             : N x 1 vector with the outputs of the training data%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         alpha(*)      : support values obtained from training%         b(*)          : Bias term obtained from training%         grain(*)      : The grain of the grid evaluated to compose the surface (by default 50)%         seldims(*)    : The principal inputs one wants to span a grid (by default [1 2])% %%     2. Using the object oriented interface:% % >> model = plotlssvm(model)% >> model = plotlssvm(model, [], grain)% >> model = plotlssvm(model, [], grain, seldims)% %       Outputs    %         model(*)   : Trained object oriented representation of the LS-SVM model%       Inputs    %         model      : Object oriented representation of the LS-SVM model%         grain(*)   : The grain of the grid evaluated to compose the surface (by default 50)%         seldims(*) : The principal inputs one wants to span a grid (by default [1 2])% % See also:%   trainlssvm, simlssvm.% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabfprintf('Start Plotting...')%% initiating the model...%if iscell(model),     model = initlssvm(model{:});    eval('model.alpha = ab{1}; model.b = ab{2};model.status = ''trained'';','model=trainlssvm(model);');end%figure;clfmodel = trainlssvm(model);% reconstruct the original support vectors ...[osvX,osvY] = postlssvm(model,model.xtrain(:,1:model.x_dim),model.ytrain(:,1:model.y_dim));%% define the principal dimensions one plots%if (model.x_dim>2)   % plotted principal dimensions  eval('princdim; restdim = setdiff(1:model.x_dim,princdim);','princdim=[1 2 3];');elseif (model.x_dim==2),  princdim = [1 2]; restdim = []; else  princdim = [1]; restdim = []; endif max(princdim)>model.x_dim,   error('Given dimensions exceed input dimensions...');end% classification (x_dim=2, y_dim=1:...) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if model.type(1)=='c', % 'classification'   %  % precision of plot  %  eval('grain;','grain = 50;');    if model.x_dim>=2,   %%%%%%%%%%%%%%%%%%       % Determine plot limits     xmin1=min(osvX(:,princdim(1))); if xmin1<0, xmin1=1.05*xmin1; else xmin1 = 0.98*xmin1; end    xmax1=max(osvX(:,princdim(1))); if xmax1>0, xmax1=1.05*xmax1; else xmax1 = 0.98*xmax1; end    xmin2=min(osvX(:,princdim(2))); if xmin2<0, xmin2=1.05*xmin2; else xmin2 = 0.98*xmin2; end    xmax2=max(osvX(:,princdim(2))); if xmax2>0, xmax2=1.05*xmax2; else xmax2 = 0.98*xmax2; end    xrange1 = xmin1:(xmax1-xmin1)/grain:xmax1;    xrange2 = xmin2:(xmax2-xmin2)/grain:xmax2;    [XX,YY] = meshgrid(xrange1,xrange2);    Xt = [reshape(XX,prod(size(XX)),1) reshape(YY,prod(size(YY)),1)];    xsteps = length(xrange1);    ysteps = length(xrange2);                %    % simulate the points    %    restdim = setdiff(1:model.x_dim, princdim);    rest = zeros(size(Xt,1),model.x_dim-2);    Xt = [Xt rest];    [ZZ,ff,model] = simlssvm(model,Xt(:,[princdim restdim]));    if min(ZZ)==max(ZZ), warning('Simulation over the input space results in only one class...'); end        %    % for plotting, the categorical format is required    %    if ~strcmpi(model.codetype,'none'),      if size(model.codebook1,1)~=1,	eval('[ZZ,codebook_cat] = code(ZZ,''code_cat'',model.codebook2,model.code_distfct);',...	     '[ZZ,codebook_cat] = code(ZZ,''code_cat'',model.codebook2);');      else	codebook_cat = model.codebook1;      end      eval('osvY = code(osvY, codebook_cat,{}, model.codebook2, model.codedist_fct, model.codedist_args);',...	   'osvY = code(osvY, codebook_cat,{}, model.codebook2);');          if max(max(ZZ))==-inf, 	error('bad coding scheme, no classes found after training');      end    else            if model.y_dim>1,	warning(['only first dimension is plotted, for multiclass' ...		 ' classification use categorical representation, ev.'...		 ' combined with a coding technique.']);      end      osvY = osvY(:,1);      ZZ = ZZ(:,1);      sosvY = sort(osvY);      codebook_cat = sosvY([1;find(sosvY(2:end)~=sosvY(1:end-1))+1])';    end        % contour plot    colormap cool;    map = colormap;    %cindex = [min(codebook1)+.1 codebook1 max(codebook1)-.1];    ZZd = reshape(ZZ(:,1),size(XX,1),size(XX,2));    eval('[C,h]=contourf(XX,YY,ZZd);','warning(''no surface plot feasable'');');     hold on;    eval('clabel(C,h,codebook_cat);',' ');            %    % plotting the datapoints    %    markers = {'*','s','+','o','x','d','v','p','h'};    for c=1:length(codebook_cat),      s = find(osvY(:,1)==codebook_cat(c));      plot(osvX(s,princdim(1)),osvX(s,princdim(2)) ,[markers{1+mod(c-1,9)} 'k']);      legstr{c} = ['class ' num2str(c)];    end    eval('legend(legstr);',' ');            % arrange axis    xlabel(['X_{' num2str(princdim(1)) '}']);    ylabel(['X_{' num2str(princdim(2)) '}']);    title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}, with ' num2str(length(codebook_cat)) ' different classes']);    axis([xmin1 xmax1 xmin2 xmax2]);      hold off;      else        error('cannot display this dimension..');  end      % function estimation (x_dim=1,2; y_dim=1)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%elseif model.type(1)=='f',  eval('grain;','grain = 200;');      % Determine plot limits     xmin1=min(osvX(:,princdim(1)));   xmax1=max(osvX(:,princdim(1)));       if model.x_dim>=2 & length(princdim)==2,  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        % Determine plot limits     xmin2=min(osvX(:,princdim(2))); if xmin2<0, xmin2=1.05*xmin2; else xmin2 = 0.975*xmin2; end    xmax2=max(osvX(:,princdim(2))); if xmax2>0, xmax2=1.05*xmax2; else xmax2 = 0.975*xmax2; end    range1 = (xmin1:(xmax1-xmin1)/grain:xmax1)';    range2 = (xmin2:(xmax2-xmin2)/grain:xmax2)';        rest = zeros(size(range1,1),model.x_dim-2);    for i=1:length(range2),      Xt = [range1 ones(size(range1,1)).*range2(i) rest];      [r,ff,model]  = simlssvm(model, Xt(:,[princdim,restdim]));      z(i,:)=r';    end        surf(range1, range2,z);    hold on;    plot3(osvX(model.selector,princdim(1)),osvX(model.selector,princdim(2)), osvY(model.selector,1),'k*');    shading interp;    xlabel(['X_' num2str(princdim(1))]);    ylabel(['X_' num2str(princdim(2))]);    zlabel('Y');    title([' function estimation using LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '} ']);    view(-30,50);    hold off;  elseif and(model.x_dim==1,model.y_dim==1) | length(princdim)==1,    range1 = (xmin1:(xmax1-xmin1)/grain:xmax1)';     rest = zeros(size(range1,1),model.x_dim-1);    grid = [range1 rest];    [z,ff,model]  = simlssvm(model,grid(:,[princdim(1) restdim]) );     plot(range1,z,'b');    hold on;    plot(osvX(model.selector,princdim(1)),osvY(model.selector,1),'k*');    xlabel('X');    ylabel('Y');    title([' function estimation using  LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}']);    %eval('title(['' function estimation using  LS-SVM_{\gamma='' num2str(model.gam(1)) '',\sigma^2='' num2str(model.kernel_pars) ''}^{'' kerneltype ''} datapoints (black *), and estimation  (blue line)'']);',' title(''function approximation using LS-SVM'')');    hold off;  else    Yh = simlssvm(model,osvX);    plot(Yh);    hold on;     plot(osvY,'*k');    xlabel('time');    ylabel('Y');    title([' function estimation using '...	   ' LS-SVM_{\gamma=' num2str(model.gam(1)) ...	   ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}'...	   ' datapoints (black *), and estimation  (blue line)']);    hold off  end  else    endfprintf('finished\n');

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色婷婷综合激情| 成人app下载| 国产精品理论在线观看| xfplay精品久久| 日韩午夜激情av| 欧美日本高清视频在线观看| 欧美综合色免费| 91福利在线免费观看| 欧美日韩另类一区| 欧美日本韩国一区| 精品国产麻豆免费人成网站| 精品国产伦一区二区三区观看体验| 日韩视频中午一区| 久久色中文字幕| 国产精品久久福利| 亚洲综合丝袜美腿| 日韩综合一区二区| 精品一区二区久久久| 国产精品 日产精品 欧美精品| 国产成人精品网址| 91极品视觉盛宴| 日韩欧美中文字幕公布| 久久久久久免费| 亚洲一区二区三区四区在线| 蜜臀av性久久久久蜜臀aⅴ流畅 | 色综合久久久久综合99| 欧美四级电影网| 精品国产精品一区二区夜夜嗨| 欧美国产一区在线| 亚洲图片欧美综合| 国产精品18久久久久久久久| 在线观看免费一区| 日韩美女主播在线视频一区二区三区 | 国产乱妇无码大片在线观看| 99久久伊人网影院| 欧美一区二区三区成人| 日韩美女精品在线| 美女高潮久久久| 91免费小视频| 26uuu精品一区二区| 亚洲成人动漫精品| 高清国产一区二区三区| 欧美日本韩国一区| 亚洲素人一区二区| 国产揄拍国内精品对白| 欧美亚日韩国产aⅴ精品中极品| 精品欧美久久久| 亚洲国产一区二区a毛片| 国产精品主播直播| 91精品国产福利在线观看| 亚洲视频电影在线| 国产成人av电影在线观看| 欧美精品欧美精品系列| 亚洲婷婷综合久久一本伊一区| 老司机午夜精品99久久| 色视频成人在线观看免| 中文字幕中文字幕中文字幕亚洲无线| 奇米888四色在线精品| 欧美午夜片在线看| 亚洲激情成人在线| jlzzjlzz国产精品久久| 亚洲国产精品激情在线观看| 国内成人精品2018免费看| 日韩一本二本av| 男女男精品视频| 538prom精品视频线放| 亚洲成人免费视频| 欧美日韩亚洲综合在线| 一级做a爱片久久| 色欧美乱欧美15图片| 亚洲三级电影网站| 色综合久久天天综合网| 亚洲黄色尤物视频| 色老综合老女人久久久| 亚洲美腿欧美偷拍| 色域天天综合网| 亚洲国产精品久久人人爱| 欧美性欧美巨大黑白大战| 亚洲高清久久久| 欧美日韩国产精品自在自线| 亚洲.国产.中文慕字在线| 欧美日韩二区三区| 日本伊人午夜精品| 日韩欧美的一区二区| 韩国午夜理伦三级不卡影院| 久久女同性恋中文字幕| 不卡视频在线观看| 怡红院av一区二区三区| 欧美久久一区二区| 美女网站在线免费欧美精品| 日韩欧美一二三| 国产成+人+日韩+欧美+亚洲| 亚洲欧美怡红院| 欧美视频精品在线| 蜜乳av一区二区| 国产精品女上位| 在线日韩av片| 精品一区二区免费视频| 国产精品免费久久| 欧美在线观看视频一区二区| 日韩黄色免费网站| 精品88久久久久88久久久| 国产91精品精华液一区二区三区 | 日韩精品免费视频人成| 精品伦理精品一区| 成人午夜激情片| 亚洲一区二区不卡免费| 精品国产乱码久久久久久夜甘婷婷| 国产成人鲁色资源国产91色综| 亚洲综合激情另类小说区| 7777精品伊人久久久大香线蕉的| 国产精选一区二区三区| 亚洲影院久久精品| 国产日韩欧美综合一区| 欧美性色aⅴ视频一区日韩精品| 久久成人免费网| 亚洲人成在线播放网站岛国| 日韩精品一区二区三区蜜臀| 91视频免费看| 国产综合色视频| 亚洲国产色一区| 国产精品天干天干在线综合| 制服丝袜中文字幕一区| 99麻豆久久久国产精品免费| 看片的网站亚洲| 亚洲已满18点击进入久久| 久久久国产精品麻豆| 69成人精品免费视频| 99re亚洲国产精品| 国产成a人亚洲精品| 极品美女销魂一区二区三区| 亚洲成人一二三| 亚洲伦在线观看| 国产精品久久久久久亚洲伦| 亚洲精品在线免费播放| 91.com视频| 欧美艳星brazzers| 色综合色狠狠天天综合色| 丁香亚洲综合激情啪啪综合| 国产主播一区二区| 美女视频黄a大片欧美| 午夜精品久久久久影视| 亚洲一区二三区| 亚洲免费观看高清完整版在线| 中文字幕国产一区| 国产精品无码永久免费888| 欧美不卡一区二区三区四区| 91精品国产综合久久福利| 欧美日韩精品是欧美日韩精品| 色婷婷综合久色| 91小视频免费观看| 99久久精品国产麻豆演员表| 国产·精品毛片| 成人黄色a**站在线观看| 成人美女视频在线观看18| 成人网男人的天堂| av在线不卡免费看| 91小视频免费看| 欧洲中文字幕精品| 欧美日韩高清影院| 日韩三级.com| 欧美精品一区二区三区蜜桃| 久久精品人人做人人爽人人| 精品成人私密视频| 国产精品美女久久久久aⅴ| 中文字幕在线观看不卡| 亚洲另类一区二区| 天天av天天翘天天综合网色鬼国产| 午夜精品福利在线| 国内精品久久久久影院一蜜桃| 国产一区二区三区蝌蚪| 成人动漫在线一区| 在线观看亚洲一区| 日韩欧美亚洲另类制服综合在线| 久久久噜噜噜久久人人看 | 欧美色电影在线| 欧美一区二区精美| 国产欧美一区视频| 一区二区三区欧美亚洲| 五月天亚洲婷婷| 国产高清不卡一区| 在线观看日韩电影| 欧美精品一区二区在线观看| 中文字幕一区二区三区色视频| 亚洲一二三四区不卡| 久久精品国产免费看久久精品| 高清不卡一区二区在线| 欧美精品视频www在线观看| 久久蜜桃香蕉精品一区二区三区| 国产精品久久久久久福利一牛影视| 洋洋av久久久久久久一区| 蜜桃久久久久久| 91美女蜜桃在线| www国产精品av| 亚洲国产成人精品视频| 成人爱爱电影网址| 欧美一级片在线观看| 日韩理论片在线| 国产成人精品在线看| 欧美一区二区日韩|