亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? aledemo.m

?? 自適應濾波器 采用改進的rls算法 LMS 算法
?? M
字號:
%% Adaptive Line Enhancer (ALE) % This demonstration illustrates the application of adaptive filters to% signal separation using a structure called an adaptive line enhancer% (ALE).  In adaptive line enhancement, a measured signal x(n) contains two% signals, an unknown signal of interest v(n), and a nearly-periodic noise % signal eta(n).% The goal is to remove the noise signal from the measured signal to obtain% the signal of interest. %% Author(s): Scott C. Douglas% Copyright 1999-2005 The MathWorks, Inc. %% Loading the Signal of Interest% We'll first load in a signal of interest, a short clip from Handel's% Hallelujah chorus.load handelv = y'/2;plot((1:length(v))/Fs,v);xlabel('Time [sec]');ylabel('Amplitude');title('Signal of Interest, v(n)');%% Listening to the Sound Clip% You can listen to the signal of interest using MATLAB's SOUND function.p8 = audioplayer(v,Fs);playblocking(p8);%% Generating the Noise Signal% Let's now make a periodic noise signal--a sinusoid with a frequency of% 1000 Hz.eta = 0.5*sin(2*pi/Fs*1000*(1:length(v)));%%% Now let's plot 10 msec of this sinusoid above.  It shows 10 periods in 10% msec, just as it should.plot(1/Fs:1/Fs:0.01,eta(1:floor(0.01*Fs)));xlabel('Time [sec]');ylabel('Amplitude');title('Noise Signal, eta(n)'); %% Listening to the Noise% The periodic noise is a pure tone. The following code plays one second of% the noise signal.p8 = audioplayer(eta(1:Fs),Fs);playblocking(p8);%% Measured Signal% The signal that we actually measure is the sum of these two signals, and% we'll call this signal s(n).s = v + eta;%%% A plot of s(n) shows that the envelope of the music signal is largely% obscured. Listening to a 2.5-second clip from the measured signal, the% noise is clearly prominent...plot((1:length(s))/Fs,s);xlabel('Time [sec]');ylabel('Amplitude');title('Measured Signal');p8 = audioplayer(s(1:2.5*Fs),Fs);playblocking(p8);%% Adaptive Filter Configuration% An adaptive line enhancer (ALE) is based on the straightforward concept% of linear prediction.  A nearly-periodic signal can be perfectly% predicted using linear combinations of its past samples, whereas a% non-periodic signal cannot.  So, a delayed version of the measured signal% s(n-D) is used as the reference input signal x(n) to the adaptive% filter, and the desired response signal d(n) is made equal to s(n). The% parameters to choose in such a system are the signal delay D and the% filter length L used in the adaptive linear estimate.  The amount of% delay depends on the amount of correlation in the signal of interest.% Since we don't have this signal (if we did, we wouldn't need the ALE!),% we shall just pick a value of D=100 and vary it later.  Such a choice% suggests that samples of the Hallelujah Chorus are uncorrelated if they% are more than about 12 msec apart.  Also, we'll choose a value of L=32% for the adaptive filter, although this too could be changed.D = 100;L  = 32;%%% Finally, we shall be using some block adaptive algorithms that require% the lengths of the vectors for x(n) and d(n) to be integer multiples of% the block length.  We'll choose a block length of N=32 with which to% begin.N = 32;ntr = N*floor((length(v)-D)/N);x = s(1:ntr);d = s(1+D:ntr+D);%% Block LMS% The first algorithm we shall explore is the Block LMS algorithm.  This% algorithm is similar to the well-known least-mean-square (LMS) algorithm,% except that it employs block coefficient updates instead of% sample-by-sample coefficient updates.  It also runs efficiently in MATLAB% when the block lengths are more than a few samples. The Block LMS algorithm % needs an initial coefficient vector W0, a block length N, and a step size % value mu.  We'll set W0 to be an all-zero vector of length L, and N is % already defined.  How do we pick mu?  Let's start with a value % of mu = 0.0001 and refine it shortly.mu = 0.0001;leak = 1; % No leakageh = adaptfilt.blms(L,mu,leak,N);%% Refining the Step Size% The Filter Design Toolbox has some built-in analysis functionality for% some of its adaptive filters.  These analysis files can, among other% things, compute upper step size bounds as suggested by statistical% analyses of the adaptive algorithm.  We can "run" these analyses by% calling them just like their adaptive algorithm counterparts. Running the% Block LMS analysis function, we get the following mean and mean-square% step size bounds:[mumax,mumaxmse] = maxstep(h,x)%%% So, our chosen step size of mu=0.0001 is well within the stability% regions of both mean and mean-square analyses.  Let's run the% algorithm...%% Running the Filter% The output signal y(n) should largely contain the periodic sinusoid,% whereas the error signal e(n) should contain the musical information, if% we've done everything right.  Since we have the original music signal% v(n), we can plot e(n) vs. v(n) on the same plot shown above along with% the residual signal e(n)-v(n).  It looks like the system is converged% after about 5 seconds of adaptation with this step size.[y,e] = filter(h,x,d);plot(1/Fs:1/Fs:ntr/Fs,v(1+D:ntr+D),...    1/Fs:1/Fs:ntr/Fs,e,1/Fs:1/Fs:ntr/Fs,e-v(1+D:ntr+D));xlabel('Time [sec]');ylabel('Signals');legend('Noiseless Music Signal v(n)',...    'Error Signal e(n)','Difference e(n)-v(n)');%% Listening to the Error Signal% The real proof, however, is in the listening; The following code allows% you to hear the error signal e(n)...p8 = audioplayer(e,Fs);playblocking(p8);%%% Notice how the sinusoidal noise decays away slowly. This behavior is due% to the adaptation of the filter coefficients toward their optimum values.%% Listening to the Residual Signal% We can listen to the residual signal e(n)-v(n) as well to hear what is% left over in the error signal.p8 = audioplayer(e-v(1+D:ntr+D),Fs);playblocking(p8);%%% Notice how this residual signal sounds like a hollow and quieter version% of the original music once the adaptive filter has converged.  That is% why we don't hear it; it simply changes the frequency content of the% music a little bit.  Remember, a linear filter cannot totally separate% signals that are overlapped in frequency, so we can expect some errors in% the output. We won't listen to the adaptive filter output y(n); it% sounds like a 1000 Hz tone subtracted from this same small residual% signal.%% FM Noise Source% Now, removing a pure sinusoid from a sinusoid plus music signal is not% particularly challenging if the frequency of the offending sinusoid is% known.  A simple two-pole, two-zero notch filter can perform this task.% So, let's make the problem a bit harder by adding an FM-modulated sinusoidal % signal as our noise source.eta = 0.5*sin(2*pi*1000/Fs*(1:length(s))+...    10*sin(2*pi/Fs*(1:length(s))));s = v + eta;plot((1:length(s))/Fs,s);xlabel('Time [sec]');ylabel('Amplitude');title('Measured Signal');%% Listening to the Music + Noise Signal% Let's listen to the music+noise signal s(n) = v(n) + eta(n) now...p8 = audioplayer(s(1:4.5*Fs),Fs);playblocking(p8);%%% The "warble" in the signal is clearly audible.  A fixed-coefficient notch% filter won't remove the FM-modulated sinusoid.  Let's see if the Block% LMS-based ALE can.  We'll increase the step size value to mu=0.005 to% help the ALE track the variations in the noise signal.mu = 0.005;x = s(1:ntr);d = s(1+D:ntr+D);h = adaptfilt.blms(L,mu,leak,N);%% Running the Adaptive Filter% We now filter the noisy music signal with the adaptive filter and compare% the error to the noiseless music signal.[y,e] = filter(h,x,d);plot(1/Fs:1/Fs:ntr/Fs,v(1+D:ntr+D),...    1/Fs:1/Fs:ntr/Fs,e,1/Fs:1/Fs:ntr/Fs,e-v(1+D:ntr+D));xlabel('Time [sec]');ylabel('Amplitude');title('Signals');legend('Noiseless Music Signal v(n)',...    'Error Signal e(n)','Difference e(n)-v(n)');%%% This time, the results aren't as impressive, but the offending noise is% still attenuated relative to its original level.%% Listening to the Error Signal% If you listen to the error signal you will notice that the residual is% fairly large, but the music masks the warble tone somewhat.  p8 = audioplayer(e,Fs);playblocking(p8);%%% Better performance might be obtained with a more advanced algorithm, such as % the Block Affine Projection (BAP) algorithm or one of the frequency-domain% adaptive filters found in the Filter Design Toolbox.  Type "help adaptfilt" % to learn about the other adaptive filter algorithms.displayEndOfDemoMessage(mfilename)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲天堂av老司机| 欧美日韩一区二区三区高清 | 狠狠久久亚洲欧美| 日韩福利电影在线| 久久精品72免费观看| 免费视频最近日韩| 国产中文字幕一区| 懂色av一区二区在线播放| 国产精品一级黄| youjizz国产精品| 91色九色蝌蚪| 欧美日韩亚洲综合一区| 欧美一区二区三区公司| 精品少妇一区二区三区在线视频 | 精品欧美乱码久久久久久1区2区| 91精品在线免费观看| 精品国产91乱码一区二区三区| 久久综合视频网| 1024成人网| 亚洲国产精品久久久久婷婷884| 亚洲va欧美va人人爽| 久久99国产精品久久| 成人黄色免费短视频| 欧美日韩视频不卡| 久久亚洲春色中文字幕久久久| 欧美高清在线一区| 亚洲成人动漫一区| 国产一级精品在线| 色素色在线综合| 欧美一级国产精品| 国产精品久99| 三级欧美在线一区| 成人一区二区三区视频在线观看| 91久久精品网| 久久久国产一区二区三区四区小说| 国产精品国产三级国产普通话蜜臀| 悠悠色在线精品| 国产精品一区二区视频| 欧美视频一区二区三区| 久久综合九色综合欧美98| 亚洲欧美日韩中文播放| 国产主播一区二区三区| 欧美男女性生活在线直播观看| 久久久美女毛片| 午夜精品久久久久久久久久久 | 91极品视觉盛宴| 精品国产污污免费网站入口 | 欧美影视一区在线| 国产欧美日韩在线| 日本在线不卡视频| 在线观看一区日韩| 中文字幕一区二区在线观看| 久久99精品国产麻豆婷婷| 欧美图区在线视频| 国产精品日韩精品欧美在线| 精品无人区卡一卡二卡三乱码免费卡| 91电影在线观看| 亚洲日本免费电影| 成人午夜免费视频| 久久精品人人做人人综合| 首页综合国产亚洲丝袜| 欧美性一级生活| 亚洲同性gay激情无套| 成人性生交大合| 久久久久9999亚洲精品| 久久av中文字幕片| 91精品久久久久久久91蜜桃 | 久久99国产精品成人| 宅男在线国产精品| 日韩专区中文字幕一区二区| 一本色道综合亚洲| 亚洲欧美日韩国产综合在线| 99久久99久久精品免费观看| 国产精品免费看片| 白白色 亚洲乱淫| 亚洲三级视频在线观看| 91丨porny丨国产入口| 国产精品天美传媒沈樵| 成人h动漫精品一区二区| 国产日韩欧美一区二区三区综合| 国产酒店精品激情| 国产精品久久久一本精品| 高清久久久久久| **性色生活片久久毛片| 色综合天天综合在线视频| 一区二区国产视频| 欧美伦理影视网| 国产一本一道久久香蕉| 中文字幕一区免费在线观看| 日本乱人伦一区| 日韩av一区二区三区四区| 日韩欧美一二区| 国产99久久久国产精品免费看| 国产精品久久久久7777按摩| 92精品国产成人观看免费| 亚洲777理论| 欧美成人一区二区| 91精品国产综合久久精品图片 | 欧美三日本三级三级在线播放| 亚洲国产精品一区二区久久恐怖片 | 亚洲综合丝袜美腿| 91精品国产综合久久婷婷香蕉| 青娱乐精品视频| 国产欧美一区二区精品性色超碰| 99久久综合精品| 亚洲国产成人91porn| www欧美成人18+| 成人av先锋影音| 奇米亚洲午夜久久精品| 国产精品久久久久久久浪潮网站| 欧美亚洲国产一卡| 精品一区二区在线免费观看| 中文字幕一区日韩精品欧美| 日韩欧美一区二区在线视频| 国产成人日日夜夜| 日精品一区二区三区| 中文字幕一区二区三| 91.成人天堂一区| 成人免费观看视频| 美女精品一区二区| 狠狠狠色丁香婷婷综合激情 | 欧美刺激脚交jootjob| 色偷偷久久一区二区三区| 美女mm1313爽爽久久久蜜臀| 一区二区三区四区不卡在线| 欧美精品一区二区蜜臀亚洲| 欧美私模裸体表演在线观看| 国产精品一卡二卡在线观看| 日韩精品三区四区| 亚洲免费伊人电影| 欧美国产丝袜视频| 欧美大度的电影原声| 精品1区2区3区| 91国内精品野花午夜精品| 床上的激情91.| 久久99热国产| 美女一区二区三区在线观看| 亚洲一级在线观看| 亚洲私人影院在线观看| 日本一区二区三区四区| 欧美成人a视频| 日韩一区二区三区高清免费看看| 日本电影欧美片| 91亚洲国产成人精品一区二三| 国产98色在线|日韩| 国产精品888| 国内精品视频一区二区三区八戒| 免费在线观看一区| 青青草精品视频| 免费在线观看视频一区| 美女视频黄久久| 精品在线播放午夜| 国产自产2019最新不卡| 国产福利一区二区三区视频在线| 久久 天天综合| 激情综合色丁香一区二区| 久久99精品国产.久久久久久 | 亚洲精品在线一区二区| 欧美成人福利视频| 精品成人一区二区三区四区| 91精品欧美综合在线观看最新| 日韩精品在线一区二区| 久久亚洲欧美国产精品乐播 | 亚洲精品视频观看| 一区二区理论电影在线观看| 亚洲国产精品嫩草影院| 日韩二区在线观看| 麻豆一区二区三| 成人深夜在线观看| 91一区二区在线观看| 在线一区二区三区| 51精品视频一区二区三区| 久久久久久久综合日本| 国产欧美日韩激情| |精品福利一区二区三区| 五月婷婷综合激情| 久久成人久久爱| 国产福利精品一区| 欧美中文字幕亚洲一区二区va在线| 欧美日本在线看| 久久综合九色综合欧美亚洲| 国产精品国产三级国产普通话99| 亚洲欧美日韩一区二区| 午夜日韩在线观看| 麻豆成人综合网| 国产精品中文字幕一区二区三区| 成人激情免费网站| 欧美日韩一本到| 国产精品萝li| 日日夜夜精品视频天天综合网| 久久99热99| 色呦呦日韩精品| 精品1区2区在线观看| 国产精品久久久久久久久免费樱桃 | 亚洲自拍另类综合| 国产精品一二三| 欧美高清精品3d| 国产精品视频免费看| 奇米精品一区二区三区在线观看一 | 成人午夜免费av|