?? ensemble2.py
字號:
# Description: Demonstrates the use of random forests from orngEnsemble module
# Category: classification, ensembles
# Classes: RandomForestLearner
# Uses: bupa.tab
# Referenced: orngEnsemble.htm
import orange, orngTree, orngEnsemble
data = orange.ExampleTable('bupa.tab')
forest = orngEnsemble.RandomForestLearner(trees=50, name="forest")
tree = orngTree.TreeLearner(minExamples=2, mForPrunning=2, \
sameMajorityPruning=True, name='tree')
learners = [tree, forest]
import orngTest, orngStat
results = orngTest.crossValidation(learners, data, folds=10)
print "Learner CA Brier AUC"
for i in range(len(learners)):
print "%-8s %5.3f %5.3f %5.3f" % (learners[i].name, \
orngStat.CA(results)[i],
orngStat.BrierScore(results)[i],
orngStat.AUC(results)[i])
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -