?? disc2.py
字號:
# Description: Attribute-based discretization. Shows how different attributes may be discretized with different categorization methods. Also shows how the resulting domain is put together using orange.select.
# Category: preprocessing
# Uses: iris
# Classes: EquiNDiscretization, EntropyDiscretization
# Referenced: o_categorization.htm
def printexamples(data, inxs, msg="First %i examples"):
print msg % len(inxs)
for i in inxs:
print i, data[i]
print
import orange
iris = orange.ExampleTable("iris")
equiN = orange.EquiNDiscretization(numberOfIntervals=4)
entropy = orange.EntropyDiscretization()
pl = equiN("petal length", iris)
sl = equiN("sepal length", iris)
sl_ent = entropy("sepal length", iris)
inxs = [0, 15, 35, 50, 98]
d_iris = iris.select(["sepal width", pl, "sepal length",sl, sl_ent, iris.domain.classVar])
printexamples(iris, inxs, "%i examples before discretization")
printexamples(d_iris, inxs, "%i examples before discretization")
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -