?? oddcont.html
字號:
<html><table height="500" width="1000" border="2"><TR height="5" width="1000"><strong><center><marquee><font color="Green"><h1>APTITUDE</h1></center></strong></font></TR></marquee><TR><TD align="left" width="200" valign="top"><table><TR><a href="numbers.html"><strong>Numbers</strong></a></TR><br><TR><a href="hcf.html"><strong>H.C.F and L.C.M</strong></a></TR><br><TR><a href="dec.html" ><strong>Decimal Fractions</strong></a></TR><br><TR><a href="simplification.html"><strong>Simplification</strong></a></TR><br><TR><a href="squareandcuberoot.html" ><strong>Square and Cube roots</strong></a></TR><br><TR><a href="average.html" ><strong>Average</strong></a></TR><br><TR><a href="pnumbers.html" ><strong>Problems on Numbers</strong></a></TR><br><TR><a href="problemsonages.html"><strong>Problems on Ages</strong></a></TR><br><TR><a href="surdsandindices.html"><strong>Surds and Indices</strong></a></TR><br><TR><a href="percent.html" ><strong>Percentage</strong></a></TR><br><TR><a href="profitandloss.html" ><strong>Profit and Loss</strong></a></TR><br><TR><a href="ratioandproportion.html" ><strong>Ratio And Proportions</strong></a></TR><br><TR><a href="partnership.html"><strong>Partnership</strong></a></TR><br><TR><a href="chainrule1.html"><strong>Chain Rule</strong></a></TR><br><TR><a href="timeandwork.html" ><strong>Time and Work</strong></a></TR><br><TR><a href="pipesandcisterns.html" ><strong>Pipes and Cisterns</strong></a></TR><br><TR><a href="timeanddistance.html"><strong>Time and Distance</strong></a></TR><br><TR><a href="trains.html" ><strong>Trains</strong></a></TR><br><TR><a href="boats.html"><strong>Boats and Streams</strong></a></TR><br><TR><a href="alligation.html"><strong>Alligation or Mixture </strong></a></TR><br><TR><a href="simple.html" ><strong>Simple Interest</strong></a></TR><br><TR><a href="CI.html"><strong>Compound Interest</strong></a></TR><br><TR><a href=""><strong>Logorithms</strong></a></TR><br><TR><a href="areas.html" ><strong>Areas</strong></a></TR><br><TR><a href="volume.html"><strong>Volume and Surface area</strong></a></TR><br><TR><a href="races.html" ><strong>Races and Games of Skill</strong></a></TR><br><TR><a href="calendar.html" ><strong>Calendar</strong></a></TR><br><TR><a href="clocks.html" ><strong>Clocks</strong></a></TR><br><TR><a href="" ><strong>Stocks ans Shares</strong></a></TR><br><TR><a href="true.html" ><strong>True Discount</strong></a></TR><br><TR><a href="banker1.html" ><strong>Bankers Discount</strong></a></TR><br><TR><a href="oddseries.html"><strong>Oddmanout and Series</strong></a></TR><br><TR><a href=""><strong>Data Interpretation</strong></a></TR><br><TR><a href="probability.html"><strong>probability</strong></a></TR><br><TR><a href="percom1.html" ><strong>Permutations and Combinations</strong></a></TR><br><TR><a href="pinkivijji_puzzles.html" ><strong>Puzzles</strong></a></TR></table></TD><TD valign="top"><a href="oddseries.html"><strong>BACK</strong></a> <h2 ><u><b>ODD MAN OUT & SERIES</b></u></h2> <br> <pre> In any type of problems,a set of numbers is given <br>in such a way that each one except one satiesfies a particular definite <br>property.The one which does not satisfy that characteristic is to be taken out.<br><h4><i>Some important properties of numbers are given below :</i></h4></pre><pre>1.Prime Number Series Example: 2,3,5,7,11,.................2.Even Number Series Example: 2,4,6,8,10,12,............3.Odd Number Series: Example: 1,3,5,7,9,11,...................4.Perfect Squares: Example: 1,4,9,16,25,..............5.Perfect Cubes: Example: 1,8,27,64,125,.................6.Multiples of Number Series: Example: 3,6,9,12,15,..............are multiples of 37.Numbers in Arthimetic Progression(A.P): Example: 13,11,9,7................8.Numbers in G.P: Example: 48,12,3,.....</pre><h5><i> SOME MORE PROPERTIES:</i></h5><pre>1. If any series starts with 0,3,.....,generally the relation will be (n2-1).2. If any series starts with 0,2,.....,generally the relation will be (n2-n).3. If any series starts with 0,6,.....,generally the relation will be (n3-n).4. If 36 is found in the series then the series will be in n2 relation.5. If 35 is found in the series then the series will be in n2-1 relation.6. If 37 is found in the series then the series will be in n2+1 relation. 7. If 125 is found in the series then the series will be in n3 relation.8. If 124 is found in the series then the series will be in n3-1 relation.9. If 126 is found in the series then the series will be in n3+1 relation.10. If 20,30 found in the series then the series will be in n2-n relation.11. If 60,120,210,........... is found as series then the series will be<br> in n3-n relation.12. If 222,............ is found then relation is n3+n13. If 21,31,.......... is series then the relation is n2-n+1.14. If 19,29,.......... is series then the relation is n2-n-1.15. If series starts with 0,3,............ the series will be on n2-1 relation.</pre></TD></TR></table></body></html>
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -