亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? untitled.m

?? 自己收集的粒子濾波程序
?? M
?? 第 1 頁 / 共 2 頁
字號:
% PURPOSE : Demonstrate the differences between the following
% filters on an options pricing problem.
%           1) Extended Kalman Filter  (EKF)
%           2) Unscented Kalman Filter (UKF)
%           3) Particle Filter         (PF)
%           4) PF with EKF proposal    (PFEKF)
%           5) PF with UKF proposal    (PFUKF)
% For more details refer to:
% AUTHORS  : Nando de Freitas      (jfgf@cs.berkeley.edu)
%            Rudolph van der Merwe (rvdmerwe@ece.ogi.edu)
%            + We re-used a bit of code by Mahesan Niranjan.             
% DATE     : 17 August 2000
clear all;
echo off;
path('./ukf',path);
path('./data',path);
% INITIALISATION AND PARAMETERS:
doPlot = 0;                 % 1 plot online. 0 = only plot at the end.
g1 = 3;                     % Paramater of Gamma transition prior.
g2 = 2;                     % Parameter of Gamman transition prior.
                            % Thus mean = 3/2 and var = 3/4.
T = 204;                    % Number of time steps.
R = diag([1e-5 1e-5]);      % EKF's measurement noise variance. 
Q = diag([1e-7 1e-5]);      % EKF's process noise variance.
P01 = 0.1;                  % EKF's initial variance of the
                            % interest rate.
P02 = 0.1;                  % EKF's initial variance of the volatility.
N = 10;                     % Number of particles.
optionNumber = 1;           % There are 5 pairs of options.
resamplingScheme = 1;       % The possible choices are
                            % systematic sampling (2),
                            % residual (1)
                             % and multinomial (3). 
                            % They're all O(N) algorithms. 
P01_ukf = 0.1;
P02_ukf = 0.1;
Q_ukf = Q;
R_ukf = R;
initr = .01;
initsig = .15;
Q_pfekf = 10*1e-5*eye(2);
R_pfekf = 1e-6*eye(2);
Q_pfukf = Q_pfekf;
R_pfukf = R_pfekf;
alpha = 1;                     % UKF : point scaling parameter
beta  = 2;                     % UKF : scaling parameter for higher order terms of Taylor series expansion 
kappa = 1;                     % UKF : sigma point selection scaling parameter (best to leave this = 0)
no_of_experiments = 1;         % Number of times the experiment is
                               % repeated (for statistical purposes).
% DATA STRUCTURES FOR RESULTS
errorcTrivial = zeros(no_of_experiments,1);
errorpTrivial = errorcTrivial;
errorcEKF     = errorcTrivial;
errorpEKF     = errorcTrivial;
errorcUKF     = errorcTrivial;
errorpUKF     = errorcTrivial;
errorcPF      = errorcTrivial;
errorpPF      = errorcTrivial;
errorcPFEKF   = errorcTrivial;
errorpPFEKF   = errorcTrivial;
errorcPFUKF   = errorcTrivial;
errorpPFUKF   = errorcTrivial;
% LOAD THE DATA:
fprintf('\n')
fprintf('Loading the data')
fprintf('\n')
load c2925.prn;         load p2925.prn;
load c3025.prn;         load p3025.prn;
load c3125.prn;         load p3125.prn;
load c3225.prn;         load p3225.prn;
load c3325.prn;         load p3325.prn;
X=[2925; 3025; 3125; 3225; 3325];
[d1,i1]=sort(c2925(:,1));  Y1=c2925(i1,:);      Z1=p2925(i1,:);
[d2,i2]=sort(c3025(:,1));  Y2=c3025(i2,:);      Z2=p3025(i2,:);
[d3,i3]=sort(c3125(:,1));  Y3=c3125(i3,:);      Z3=p3125(i3,:);
[d4,i4]=sort(c3225(:,1));  Y4=c3225(i4,:);      Z4=p3225(i4,:);
[d5,i5]=sort(c3325(:,1));  Y5=c3325(i5,:);      Z5=p3325(i5,:);
d=Y1(:,1); 
% d - date to maturity.
St(1,:) = Y1(:,3)';   C(1,:) = Y1(:,2)';  P(1,:) = Z1(:,2)';
St(2,:) = Y2(:,3)';   C(2,:) = Y2(:,2)';  P(2,:) = Z2(:,2)';
St(3,:) = Y3(:,3)';   C(3,:) = Y3(:,2)';  P(3,:) = Z3(:,2)';
St(4,:) = Y4(:,3)';   C(4,:) = Y4(:,2)';  P(4,:) = Z4(:,2)';
St(5,:) = Y5(:,3)';   C(5,:) = Y5(:,2)';  P(5,:) = Z5(:,2)';
% St - Stock price.
% C - Call option price.
% P - Put Option price.
% X - Strike price.
% Normalise with respect to the strike price:
for i=1:5
   Cox(i,:) = C(i,:) / X(i);
   Sox(i,:) = St(i,:) / X(i);
   Pox(i,:) = P(i,:) / X(i);
end
Cpred=zeros(T,5);
Ppred=zeros(T,5);
% PLOT THE LOADED DATA:
figure(1)
clf;
plot(Cox');
ylabel('Call option prices','fontsize',15);
xlabel('Time to maturity','fontsize',15);
fprintf('\n')
fprintf('Press a key to continue')  
pause;
fprintf('\n')
fprintf('\n')
fprintf('Training has started')
fprintf('\n')
% SPECIFY THE INPUTS AND OUTPUTS
ii=optionNumber;   % Only one call price. Change 1 to 3, etc. for other prices.
X = X(ii,1);
St = Sox(ii,1:T);
C = Cox(ii,1:T);
P = Pox(ii,1:T);
counter=1:1:T;
tm = (224*ones(size(counter))-counter)/260;
u = [St' tm']';
y = [C' P']'; % Call and put prices.
% MAIN LOOP
for expr=1:no_of_experiments,
  rand('state',sum(100*clock));   % Shuffle the pack!
  randn('state',sum(100*clock));   % Shuffle the pack!  
%%%%%%% PERFORM EKF and UKF ESTIMATION  %%%
% INITIALISATION:
mu_ekf = ones(2,T);       % EKF estimate of the mean of the states.
Inn = ones(2,2,T);        % Innovations Covariance.
Inn_ukf = Inn;
mu_ekf(1,1) = initr;
mu_ekf(2,1) = initsig;
P_ekf = ones(2,2,T);      % EKF estimate of the variance of the states.
for t=1:T
  P_ekf(:,:,t)= diag([P01 P02]);
end;
mu_ukf = mu_ekf;        % UKF estimate of the mean of the states.
P_ukf = P_ekf;          % UKF estimate of the variance of the states.
yPred = ones(2,T);      % One-step-ahead predicted values of y.
yPred_ukf = yPred;
mu_ekfPred = mu_ekf;    % EKF O-s-a estimate of the mean of the states.
PPred =eye(2);          % EKF O-s-a estimate of the variance of the states.
disp(' ');
for t=2:T,    
  fprintf('EKF & UKF : t = %i / %i  \r',t,T);
  fprintf('\n')
  % EKF PREDICTION STEP:
  mu_ekfPred(:,t) = feval('bsffun',mu_ekf(:,t-1),t);
  Jx = eye(2);  % Jacobian for bsffun.  
  PPred = Q + Jx*P_ekf(:,:,t-1)*Jx'; 
  % EKF CORRECTION STEP:
  yPred(:,t) = feval('bshfun',mu_ekfPred(:,t),u(:,t),t);
  % COMPUTE THE JACOBIAN:
  St  = u(1,t);            % Index price.
  tm  = u(2,t);            % Time to maturity.
  r   = mu_ekfPred(1,t);   % Risk free interest rate.
 sig = mu_ekfPred(2,t);   % Volatility.  
  d1 = (log(St) + (r+0.5*(sig^2))*tm ) / (sig * (tm^0.5));
  d2 = d1 - sig * (tm^0.5);  
  % Differentials of call price
  dcsig = St * sqrt(tm) * exp(-d1^2) / sqrt(2*pi);
  dcr   = tm * exp(-r*tm) * normcdf(d2);
  % Differentials of put price
  dpsig = dcsig;
  dpr   = -tm * exp(-r*tm) * normcdf(-d2);
  Jy = [dcr dpr; dcsig dpsig]'; % Jacobian for bshfun.
  % APPLY THE EKF UPDATE EQUATIONS:
  M = R + Jy*PPred*Jy';                 % Innovations covariance.
  Inn(:,:,t)=M;
  K = PPred*Jy'*inv(M);                 % Kalman gain.
  mu_ekf(:,t) = mu_ekfPred(:,t) + K*(y(:,t)-yPred(:,t));
  P_ekf(:,:,t) = PPred - K*Jy*PPred;
  % Full Unscented Kalman Filter step
  [mu_ukf(:,t),P_ukf(:,:,t),zab1,zab2,yPred_ukf(:,t),inov_ukf,Inn_ukf(:,:,t),K_ukf]=ukf(mu_ukf(:,t-1),P_ukf(:,:,t-1),u(:,t),Q_ukf,'ukf_bsffun',y(:,t),R_ukf,'ukf_bshfun',t,alpha,beta,kappa);
end;   % End of t loop.
%-- CALCULATE PERFORMANCE --%
figure(3)
clf;
subplot(211)
p1=plot(1:T,mu_ekf(1,:),'r','linewidth',2);hold on;
p2=plot(1:T,mu_ukf(1,:),'b','linewidth',2);hold off;
legend([p1 p2],'ekf','ukf');
ylabel('Interest rate','fontsize',15)
subplot(212)
p1=plot(1:T,mu_ekf(2,:),'r','linewidth',2);hold on;
p2=plot(1:T,mu_ukf(2,:),'b','linewidth',2);hold off;
ylabel('Volatility','fontsize',15);
xlabel('Time (days)','fontsize',15)
zoom on;
% Transform innovations covariance for plotting.
Inn11=zeros(1,T);
Inn22=zeros(1,T);
Pekf11=zeros(1,T);
Pekf22=zeros(1,T);
for t=1:T,
  Inn11(t)=Inn(1,1,t);
  Inn22(t)=Inn(2,2,t);
  Inn11_ukf(t)=Inn_ukf(1,1,t);

 Inn22_ukf(t)=Inn_ukf(2,2,t);
  Pekf11(t)=P_ekf(1,1,t);
  Pekf22(t)=P_ekf(2,2,t);
  Pukf11(t)=P_ukf(1,1,t);
  Pukf22(t)=P_ukf(2,2,t);
end;
figure(1)
clf;
subplot(211)
plot(1:T,y(1,:),'r--',1:T,yPred(1,:),'b','linewidth',2);
hold on;
plot(1:T,yPred(1,:)+2*sqrt(Inn11),'k',1:T,yPred(1,:)-2*sqrt(Inn11),'k')
ylabel('Call price','fontsize',15)
legend('Actual price','Prediction');
axis([0 204 0.03 .22])
title('EKF');
subplot(212)
plot(1:T,y(2,:),'r--',1:T,yPred(2,:),'b','linewidth',2);
hold on;
plot(1:T,yPred(2,:)+2*sqrt(Inn22),'k',1:T,yPred(2,:)-2*sqrt(Inn22),'k')
ylabel('Put price','fontsize',15)
xlabel('Time (days)','fontsize',15)
axis([0 204 0 .06])
zoom on;
legend('Actual price','Prediction');
figure(2)
clf;
subplot(211)
plot(1:T,y(1,:),'r--',1:T,yPred_ukf(1,:),'b','linewidth',2);
hold on;
plot(1:T,yPred_ukf(1,:)+2*sqrt(Inn11_ukf),'k',1:T,yPred_ukf(1,:)-2*sqrt(Inn11_ukf),'k')
ylabel('Call price','fontsize',15)
legend('Actual price','Prediction');
axis([0 204 0.03 .22])
title('UKF');
subplot(212)
plot(1:T,y(2,:),'r--',1:T,yPred_ukf(2,:),'b','linewidth',2);
hold on;
plot(1:T,yPred_ukf(2,:)+2*sqrt(Inn22_ukf),'k',1:T,yPred_ukf(2,:)-2*sqrt(Inn22_ukf),'k')
ylabel('Put price','fontsize',15)
xlabel('Time (days)','fontsize',15)
axis([0 204 0 .06])
zoom on;
legend('Actual price','Prediction');
%%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO  
% INITIALISATION:
xparticle_pf = ones(2,T,N);      % These are the particles for the estimate
                                 % of x. Note that there's no need to store
                                 % them for all t. We're only doing this to
                                 % show you all the nice plots at the end.
xparticlePred_pf = ones(2,T,N);    % One-step-ahead predicted values of the states.
yPred_pf = ones(2,T,N);            % One-step-ahead predicted values of y.
w = ones(T,N);                   % Importance weights.
% Initialisation:
for i=1:N,
  xparticle_pf(1,1,i) = initr; % sqrt(initr)*randn(1,1);
  xparticle_pf(2,1,i) = initsig; %sqrt(initsig)*randn(1,1);
end;
disp(' ');
tic;                             % Initialize timer for benchmarking
for t=2:T,    
  fprintf('PF :  t = %i / %i  \r',t,T);
  fprintf('\n')
  
  % PREDICTION STEP:
  % ================ 
  % We use the transition prior as proposal.
  for i=1:N,
    xparticlePred_pf(:,t,i) = feval('bsffun',xparticle_pf(:,t-1,i),t) + sqrtm(Q)*randn(2,1);    
  end;
  % EVALUATE IMPORTANCE WEIGHTS:
  % For our choice of proposal, the importance weights are give by:  
  for i=1:N,
    yPred_pf(:,t,i) = feval('bshfun',xparticlePred_pf(:,t,i),u(:,t),t);        
    lik = exp(-0.5*(y(:,t)-yPred_pf(:,t,i))'*inv(R)*(y(:,t)-yPred_pf(:,t,i)) ) + 1e-99; % Deal with ill-conditioning.
    w(t,i) = lik;    
  end;  

  w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.
  % SELECTION STEP:
  % Here, we give you the choice to try three different types of
  % resampling algorithms. Note that the code for these algorithms
  % applies to any problem!
  if resamplingScheme == 1
    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.
  elseif resamplingScheme == 2
    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.
  else  
    outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.  
  end;
  xparticle_pf(:,t,:) = xparticlePred_pf(:,t,outIndex); % Keep particles with
                                                    % resampled indices.
end;   % End of t loop.
time_pf = toc;    % How long did this take?
% Compute posterior mean predictions:
yPFmeanC=zeros(1,T);
yPFmeanP=zeros(1,T);
for t=1:T,
  yPFmeanC(t) = mean(yPred_pf(1,t,:));
  yPFmeanP(t) = mean(yPred_pf(2,t,:));  
end;  
figure(4)
clf;
domain = zeros(T,1);
range = zeros(T,1);
thex=[0:1e-3:20e-3];
hold on
ylabel('Time (t)','fontsize',15)
xlabel('r_t','fontsize',15)
zlabel('p(r_t|S_t,t_m,C_t,P_t)','fontsize',15)
for t=11:20:200,
  [range,domain]=hist(xparticle_pf(1,t,:),thex);
  waterfall(domain,t,range/sum(range));
end;
view(-30,80);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩一区二区在线观看| 欧美精品一区二| 欧美一区二区三区视频| 国产网站一区二区| 天天色综合成人网| 不卡视频一二三| 91精品国产综合久久婷婷香蕉| 欧美国产精品一区二区三区| 日韩激情视频网站| 色偷偷成人一区二区三区91| 精品999久久久| 亚洲午夜久久久久久久久电影网 | 国产精品你懂的在线| 亚洲18女电影在线观看| www.在线欧美| 久久只精品国产| 日韩激情在线观看| 欧美日韩精品二区第二页| 国产精品理论片在线观看| 韩国一区二区在线观看| 欧美一级免费大片| 日韩主播视频在线| 欧美影院精品一区| 亚洲精品乱码久久久久久日本蜜臀| 国产成人a级片| 久久久三级国产网站| 麻豆精品视频在线观看免费| 欧美精品一二三四| 午夜激情久久久| 欧美日韩一区中文字幕| 一区二区视频免费在线观看| 99久久99久久精品免费看蜜桃| 久久久不卡影院| 国产精品影视在线观看| 精品91自产拍在线观看一区| 九九九精品视频| 精品国产不卡一区二区三区| 久久精品99国产精品日本| 欧美一区二区三区免费在线看| 香港成人在线视频| 日韩视频免费观看高清完整版在线观看 | 日本v片在线高清不卡在线观看| 色综合久久久久| 亚洲一区二区三区视频在线| 欧美日韩综合一区| 亚洲成人午夜影院| 8x8x8国产精品| 卡一卡二国产精品| 久久久不卡影院| 不卡的电影网站| 亚洲日本免费电影| 欧美性生活大片视频| 亚洲成av人片在www色猫咪| 777久久久精品| 国产一区二区免费视频| 中文字幕高清不卡| 日本高清视频一区二区| 日韩中文字幕不卡| 久久久精品综合| 一本一道久久a久久精品| 亚洲午夜在线视频| 欧美tickling网站挠脚心| 粉嫩久久99精品久久久久久夜| 亚洲特黄一级片| 555www色欧美视频| 国产成人在线观看| 亚洲激情自拍视频| 日韩免费观看高清完整版| 国产99久久久国产精品潘金| 一区二区三区中文字幕精品精品 | 成人性生交大片免费看视频在线 | 天堂成人国产精品一区| 久久久噜噜噜久噜久久综合| 99久久精品免费看| 蜜桃久久久久久| 亚洲女人的天堂| 精品电影一区二区| 日本久久电影网| 热久久一区二区| 国产精品美女久久久久久久网站| 欧美性受xxxx| 成人av免费观看| 秋霞午夜鲁丝一区二区老狼| 中文字幕+乱码+中文字幕一区| 欧美日韩国产美女| 成人动漫一区二区三区| 美日韩一级片在线观看| 亚洲免费观看高清完整版在线| 精品国产一区二区三区忘忧草| 在线免费观看日韩欧美| 国产91对白在线观看九色| 亚洲国产视频一区二区| 国产精品久久夜| 久久久久久免费| 91精品国产一区二区三区| 91麻豆精品一区二区三区| 国产麻豆精品久久一二三| 日韩高清不卡一区二区三区| 亚洲欧美一区二区久久| 国产婷婷色一区二区三区四区| 欧美一区二区精品久久911| 在线一区二区三区做爰视频网站| 国产福利精品导航| 激情综合网激情| 美日韩一区二区| 日本欧美在线看| 日精品一区二区| 视频一区二区三区入口| 午夜久久福利影院| 亚洲综合在线免费观看| 亚洲美女视频在线观看| 1区2区3区欧美| 国产精品国产三级国产专播品爱网 | 日韩午夜av电影| 91精品午夜视频| 欧美一区二区三区在线看| 欧美男男青年gay1069videost | 欧美一区二区三区四区高清| 欧美中文字幕一区二区三区| 一本久久精品一区二区| 91小视频在线免费看| 91视频一区二区三区| 91欧美一区二区| 在线一区二区三区做爰视频网站| av一本久道久久综合久久鬼色| 99精品视频一区| 色偷偷88欧美精品久久久| 欧美亚洲一区二区在线观看| 精品视频资源站| 777xxx欧美| www欧美成人18+| 日本一区二区三区dvd视频在线| 中文字幕二三区不卡| 亚洲色图色小说| 亚洲6080在线| 美女国产一区二区三区| 国产激情91久久精品导航| 成人av在线资源| 在线观看中文字幕不卡| 欧美日韩1区2区| 2021国产精品久久精品| 国产精品久久久久影院老司| 一区二区三区色| 免费在线看成人av| 国产99久久久国产精品免费看| 99re这里只有精品视频首页| 欧美午夜片在线看| 欧美成人精品高清在线播放| 欧美—级在线免费片| 日韩美女啊v在线免费观看| 亚洲一区二区三区四区不卡| 久久精品国产99| 91麻豆免费在线观看| 日韩一区二区三区视频在线| 国产精品欧美一级免费| 午夜视频一区二区| 成人永久aaa| 欧美久久久久久久久中文字幕| 日韩精品一区二区三区四区| 国产精品乱子久久久久| 日韩二区在线观看| 白白色 亚洲乱淫| 欧美xxxxx裸体时装秀| 亚洲精品一二三四区| 久久精品国产免费看久久精品| 9色porny自拍视频一区二区| 日韩免费观看高清完整版在线观看| 国产精品久久久久久久裸模| 免费在线观看视频一区| 一本大道久久精品懂色aⅴ| 精品国产91久久久久久久妲己| 亚洲美女免费在线| 国产精品一区专区| 7777精品伊人久久久大香线蕉超级流畅 | 国产乱码精品一区二区三区五月婷| 一本一道综合狠狠老| 久久久久国产精品麻豆| 亚洲国产欧美在线人成| 大桥未久av一区二区三区中文| 欧美一区二区在线视频| 亚洲日本丝袜连裤袜办公室| 国产98色在线|日韩| 欧美tickle裸体挠脚心vk| 午夜激情一区二区三区| 日本道免费精品一区二区三区| 久久久精品影视| 精品亚洲成a人在线观看| 欧美日韩免费电影| 亚洲精品欧美激情| av电影在线观看一区| 久久久久久免费| 韩国精品在线观看| 精品欧美乱码久久久久久1区2区| 国产成人av电影在线播放| 欧美一区二区三区白人| 首页国产丝袜综合| 91精品久久久久久久99蜜桃| 亚洲成a人v欧美综合天堂| 色欧美片视频在线观看| 一区二区三区日本|