亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? untitled.m

?? 自己收集的粒子濾波程序
?? M
?? 第 1 頁 / 共 2 頁
字號:
rotate3d on;
a=get(gca);
set(gca,'ygrid','off');
figure(5)
clf;
domain = zeros(T,1);
range = zeros(T,1);
thex=[0.1:1e-2:0.25];
hold on
ylabel('Time (t)','fontsize',15)
xlabel('r_t','fontsize',15)
zlabel('p(\sigma_t|S_t,t_m,C_t,P_t)','fontsize',15)
%v=[0 1];
%caxis(v);
for t=11:20:200,
  [range,domain]=hist(xparticle_pf(2,t,:),thex);
  waterfall(domain,t,range/sum(range));
end;
view(-30,80);
rotate3d on;
a=get(gca);
set(gca,'ygrid','off');
%%%%%%%%%%%PERFORM SEQUENTIAL MONTE CARLO  %%%%%%%%%%%%
%%%%%%  ======= EKF proposal ========  %%%%%%%% INITIALISATION:
xparticle_pfekf = ones(2,T,N);      % These are the particles for the estimate
                                    % of x. Note that there's no need to store
                                    % them for all t. We're only doing this to
                                    % show you all the nice plots at the end.
Pparticle_pfekf = cell(N,1);        % Particles for the covariance of x.
% Initialisation:
for i=1:N,
  xparticle_pfekf(1,1,i) = initr;   % sqrt(initr)*randn(1,1);
  xparticle_pfekf(2,1,i) = initsig; %sqrt(initsig)*randn(1,1);
  Pparticle_pfekf{i} = ones(2,2,T);
  for t=1:T,
    Pparticle_pfekf{i}(:,:,t)= diag([P01 P02]); 
  end;
end;  
xparticlePred_pfekf = ones(2,T,N);    % One-step-ahead predicted values of the states.
PparticlePred_pfekf = Pparticle_pfekf;    % One-step-ahead predicted values of P.
yPred_pfekf = ones(2,T,N);          % One-step-ahead predicted values of y.
w = ones(T,N);                      % Importance weights.
muPred_pfekf = ones(2,T);           % EKF O-s-a estimate of the mean of the states.
PPred_pfekf = ones(2,2);            % EKF O-s-a estimate of the variance of the states.
mu_pfekf = ones(2,T,N);             % EKF estimate of the mean of the states.
P_pfekf = ones(2,2,T);              % EKF estimate of the variance of the states.
disp(' ');
tic;                                % Initialize timer for benchmarking
for t=2:T,    
  fprintf('PF-EKF : t = %i / %i  \r',t,T);
  fprintf('\n')
  % PREDICTION STEP:
  % We use the EKF as proposal.
  for i=1:N,
    muPred_pfekf(:,t) = feval('bsffun',xparticle_pfekf(:,t-1,i),t);
    Jx = eye(2);                                 % Jacobian for ffun.
    PPred_pfekf = Q_pfekf + Jx*Pparticle_pfekf{i}(:,:,t-1)*Jx'; 
    yPredTmp = feval('bshfun',muPred_pfekf(:,t),u(:,t),t);
    % COMPUTE THE JACOBIAN:
    St  = u(1,t);              % Index price.
    tm  = u(2,t);              % Time to maturity.
    r   = muPred_pfekf(1,t);   % Risk free interest rate.
    sig = muPred_pfekf(2,t);   % Volatility.  
    d1 = (log(St) + (r+0.5*(sig^2))*tm ) / (sig * (tm^0.5));
    d2 = d1 - sig * (tm^0.5);  
    % Differentials of call price
    dcsig = St * sqrt(tm) * exp(-d1^2) / sqrt(2*pi);
    dcr   = tm * exp(-r*tm) * normcdf(d2);
    % Differentials of put price
    dpsig = dcsig;
    dpr   = -tm * exp(-r*tm) * normcdf(-d2);
    Jy = [dcr dpr; dcsig dpsig]'; % Jacobian for bshfun.
    % APPLY THE EKF UPDATE EQUATIONS:
    M = R_pfekf + Jy*PPred_pfekf*Jy';                  % Innovations covariance.
   K = PPred_pfekf*Jy'*inv(M);                        % Kalman gain.
    mu_pfekf(:,t,i) = muPred_pfekf(:,t) + K*(y(:,t)-yPredTmp); % Mean of proposal.
    P_pfekf(:,:,t) = PPred_pfekf - K*Jy*PPred_pfekf;           % Variance of proposal.
    xparticlePred_pfekf(:,t,i) = mu_pfekf(:,t,i) + sqrtm(P_pfekf(:,:,t))*randn(2,1);
    PparticlePred_pfekf{i}(:,:,t) = P_pfekf(:,:,t);
  end;
  % EVALUATE IMPORTANCE WEIGHTS:
  % For our choice of proposal, the importance weights are give by:  
  for i=1:N,
    yPred_pfekf(:,t,i) = feval('bshfun',xparticlePred_pfekf(:,t,i),u(:,t),t);        
    lik = exp(-0.5*(y(:,t)-yPred_pfekf(:,t,i))'*inv(R)*(y(:,t)-yPred_pfekf(:,t,i)) ) + 1e-99;
    prior = exp(-0.5*(xparticlePred_pfekf(:,t,i)- xparticle_pfekf(:,t-1,i))'*inv(Q) * (xparticlePred_pfekf(:,t,i)-xparticle_pfekf(:,t-1,i) ))+ 1e-99;
    proposal = inv(sqrt(det(PparticlePred_pfekf{i}(:,:,t)))) * exp(-0.5*(xparticlePred_pfekf(:,t,i)-mu_pfekf(:,t,i))'*inv(PparticlePred_pfekf{i}(:,:,t)) * (xparticlePred_pfekf(:,t,i)-mu_pfekf(:,t,i)))+ 1e-99;
    w(t,i) = lik*prior/proposal;      
  end;  
  w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.
  % SELECTION STEP:
  % Here, we give you the choice to try three different types of
  % resampling algorithms. Note that the code for these algorithms
  % applies to any problem!
  if resamplingScheme == 1
    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.
  elseif resamplingScheme == 2
    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.
  else  
    outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.  
  end;
 xparticle_pfekf(:,t,:) = xparticlePred_pfekf(:,t,outIndex); % Keep particles with
                                                              % resampled indices.
  for i=1:N,
    Pparticle_pfekf{i} = PparticlePred_pfekf{outIndex(i)};  
  end;
end;   % End of t loop.
time_pfekf = toc;
%% PERFORM SEQUENTIAL MONTE CARLO  %
% ======== UKF proposal ========  % INITIALISATION:
xparticle_pfukf = ones(2,T,N);      % These are the particles for the estimate
                                    % of x. Note that there's no need to store
                                    % them for all t. We're only doing this to
                                    % show you all the nice plots at the end.
Pparticle_pfukf = cell(N,1);        % Particles for the covariance of x.
%Initialization
for i=1:N,
  xparticle_pfukf(1,1,i) = initr;   % sqrt(initr)*randn(1,1);
  xparticle_pfukf(2,1,i) = initsig; % sqrt(initsig)*randn(1,1);
  Pparticle_pfukf{i} = ones(2,2,T);
  for t=1:T,
    Pparticle_pfukf{i}(:,:,t) = diag([P01_ukf P02_ukf]);
  end
end  
xparticlePred_pfukf = ones(2,T,N);       % One-step-ahead predicted values of the states.
PparticlePred_pfukf = Pparticle_pfukf;   % One-step-ahead predicted values of P.
yPred_pfukf = ones(2,T,N);               % One-step-ahead predicted values of y.
w = ones(T,N);                           % Importance weights.
muPred_pfukf = ones(2,T);                % EKF O-s-a estimate of the mean of the states.
PPred_pfukf = ones(2,2);                 % EKF O-s-a estimate of the variance of the states.
mu_pfukf = ones(2,T,N);                  % EKF estimate of the mean of the states.
P_pfukf = ones(2,2,T);                   % EKF estimate of the variance of the states.
error=0;
disp(' ');
tic;
if (1),
for t=2:T,    
  fprintf('PF-UKF : t = %i / %i  \r',t,T);
  fprintf('\n')
  % PREDICTION STEP:
  % We use the UKF as proposal.
  for i=1:N,
    % Call Unscented Kalman Filter
    [mu_pfukf(:,t,i),P_pfukf(:,:,t)]=ukf(xparticle_pfukf(:,t-1,i),Pparticle_pfukf{i}(:,:,t-1),u(:,t),Q_pfukf,'ukf_bsffun',y(:,t),R_pfukf,'ukf_bshfun',t,alpha,beta,kappa);
    xparticlePred_pfukf(:,t,i) = mu_pfukf(:,t,i) + sqrtm(P_pfukf(:,:,t))*randn(2,1);
    PparticlePred_pfukf{i}(:,:,t) = P_pfukf(:,:,t);
  end;
  % EVALUATE IMPORTANCE WEIGHTS:
  % ============================
  % For our choice of proposal, the importance weights are give by:  
  for i=1:N,
    yPred_pfukf(:,t,i) = feval('bshfun',xparticlePred_pfukf(:,t,i),u(:,t),t);
    lik = exp(-0.5*(y(:,t)-yPred_pfukf(:,t,i))'*inv(R)*(y(:,t)-yPred_pfukf(:,t,i)) ) + 1e-99;
    prior = exp(-0.5*(xparticlePred_pfukf(:,t,i)- xparticle_pfukf(:,t-1,i))'*inv(Q) * (xparticlePred_pfukf(:,t,i)-xparticle_pfukf(:,t-1,i) ))+ 1e-99;    
    proposal = inv(sqrt(det(PparticlePred_pfukf{i}(:,:,t)))) * exp(-0.5*(xparticlePred_pfukf(:,t,i)-mu_pfukf(:,t,i))'*inv(PparticlePred_pfukf{i}(:,:,t)) * (xparticlePred_pfukf(:,t,i)-mu_pfukf(:,t,i)))+ 1e-99;    
    w(t,i) = lik*prior/proposal;      
  end;  
  w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.
  % SELECTION STEP:
  % Here, we give you the choice to try three different types of
  % resampling algorithms. Note that the code for these 
  algorithms
  % applies to any problem!
  if resamplingScheme == 1
    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.
  elseif resamplingScheme == 2
    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.
  else  
    outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.  
  end;
  xparticle_pfukf(:,t,:) = xparticlePred_pfukf(:,t,outIndex); % Keep particles with
                                              % resampled indices.
  for i=1:N,					      
    Pparticle_pfukf{i} = PparticlePred_pfukf{outIndex(i)};
  end
end;   % End of t loop.
end
time_pfukf = toc;
% Compute posterior mean predictions:
yPFEKFmeanC=zeros(1,T);
yPFEKFmeanP=zeros(1,T);
for t=1:T,
  yPFEKFmeanC(t) = mean(yPred_pfekf(1,t,:));
  yPFEKFmeanP(t) = mean(yPred_pfekf(2,t,:));  
end;  
yPFUKFmeanC=zeros(1,T);
yPFUKFmeanP=zeros(1,T);
for t=1:T,
  yPFUKFmeanC(t) = mean(yPred_pfukf(1,t,:));
  yPFUKFmeanP(t) = mean(yPred_pfukf(2,t,:));  
end;  
errorcTrivial(expr) = norm(C(104:204)-C(103:203));
errorpTrivial(expr) = norm(P(104:204)-P(103:203));
errorcEKF(expr) =norm(C(104:204)-yPred(1,104:204));
errorpEKF(expr) =norm(P(104:204)-yPred(2,104:204));
errorcUKF(expr) =norm(C(104:204)-yPred_ukf(1,104:204));
errorpUKF(expr) =norm(P(104:204)-yPred_ukf(2,104:204));
errorcPF(expr) =norm(C(104:204)-yPFmeanC(104:204));
errorpPF(expr) =norm(P(104:204)-yPFmeanP(104:204));
errorcPFEKF(expr) =norm(C(104:204)-yPFEKFmeanC(104:204));
errorpPFEKF(expr) =norm(P(104:204)-yPFEKFmeanP(104:204));
errorcPFUKF(expr) =norm(C(104:204)-yPFUKFmeanC(104:204));
errorpPFUKF(expr) =norm(P(104:204)-yPFUKFmeanP(104:204));
disp(' ');
disp(['Experiment ' num2str(expr) ' of ' num2str(no_of_experiments) ' : Mean square errors sqrt(sum((errors).^2))']);
disp('------------------------------------------------------------');
disp(' ');
disp(['Trivial call   = ' num2str(errorcTrivial(expr))]);
disp(['EKF call       = ' num2str(errorcEKF(expr))]);
disp(['UKF call       = ' num2str(errorcUKF(expr))]);
disp(['PF call        = ' num2str(errorcPF(expr))]);
disp(['PF-EKF call    = ' num2str(errorcPFEKF(expr))]);
disp(['PF-UKF call    = ' num2str(errorcPFUKF(expr))]);
disp(['Trivial put    = ' num2str(errorpTrivial(expr))]);
disp(['EKF put        = ' num2str(errorpEKF(expr))]);
disp(['UKF put        = ' num2str(errorpUKF(expr))]);
disp(['PF put         = ' num2str(errorpPF(expr))]);
disp(['PF-EKF put     = ' num2str(errorpPFEKF(expr))]);
disp(['PF-UKF put     = ' num2str(errorpPFUKF(expr))]);
figure(9)
bti=20;
lw=2;
clf;
subplot(211)
p0=plot(bti:T,y(1,bti:T),'k-o','linewidth',lw); hold on;
p1=plot(bti:T,yPFmeanC(bti:T),'m','linewidth',lw);
p2=plot(bti:T,yPFEKFmeanC(bti:T),'r','linewidth',lw);
p3=plot(bti:T,yPFUKFmeanC(bti:T),'b','linewidth',lw); hold off;
ylabel('Call price','fontsize',15);
legend([p0 p1 p2 p3],'Actual price','PF prediction','PF-EKF prediction','PF-UKF prediction');
v=axis;
axis([bti T v(3) v(4)]);
subplot(212)
p0=plot(bti:T,y(2,bti:T),'k-o','linewidth',lw); hold on;
p1=plot(bti:T,yPFmeanP(bti:T),'m','linewidth',lw);
p2=plot(bti:T,yPFEKFmeanP(bti:T),'r','linewidth',lw);
p3=plot(bti:T,yPFUKFmeanP(bti:T),'b','linewidth',lw); 
hold off;
ylabel('Put price','fontsize',15);
legend([p0 p1 p2 p3],'Actual price','PF prediction','PF-EKF prediction','PF-UKF prediction');
xlabel('Time (days)','fontsize',15)
v=axis;
axis([bti T v(3) v(4)]);
zoom on;
end   % END OF MAIN LOOP
% CALCULATE MEAN AND VARIANCE OF EXPERIMENT RESULTS
% means
errorcTrivial_mean = mean(errorcTrivial);
errorcEKF_mean     = mean(errorcEKF);
errorcUKF_mean     = mean(errorcUKF);
errorcPF_mean      = mean(errorcPF);
errorcPFEKF_mean   = mean(errorcPFEKF);
errorcPFUKF_mean   = mean(errorcPFUKF);
errorpTrivial_mean = mean(errorpTrivial);
errorpEKF_mean     = mean(errorpEKF);
errorpUKF_mean     = mean(errorpUKF);
errorpPF_mean      = mean(errorpPF);
errorpPFEKF_mean   = mean(errorpPFEKF);
errorpPFUKF_mean   = mean(errorpPFUKF);
% variances
errorcTrivial_var = var(errorcTrivial);
errorcEKF_var     = var(errorcEKF);
errorcUKF_var     = var(errorcUKF);
errorcPF_var      = var(errorcPF);
errorcPFEKF_var   = var(errorcPFEKF);
errorcPFUKF_var   = var(errorcPFUKF);
errorpTrivial_var = var(errorpTrivial);
errorpEKF_var     = var(errorpEKF);
errorpUKF_var     = var(errorpUKF);
errorpPF_var      = var(errorpPF);
errorpPFEKF_var   = var(errorpPFEKF);
errorpPFUKF_var   = var(errorpPFUKF);
disp(' ');
disp('Mean and Variance of MSE ');
disp('-------------------------');
disp(' ');
disp(['Trivial call   : ' num2str(errorcTrivial_mean) ' (' num2str(errorcTrivial_var) ')']);
disp(['EKF call       : ' num2str(errorcEKF_mean) ' (' num2str(errorcEKF_var) ')']);
disp(['UKF call       : ' num2str(errorcUKF_mean) ' (' num2str(errorcUKF_var) ')']);
disp(['PF call        : ' num2str(errorcPF_mean) ' (' num2str(errorcPF_var) ')']);
disp(['PF-EKF call    : ' num2str(errorcPFEKF_mean) ' (' num2str(errorcPFEKF_var) ')']);
disp(['PF-UKF call    : ' num2str(errorcPFUKF_mean) ' (' num2str(errorcPFUKF_var) ')']);
disp(['Trivial put    : ' num2str(errorpTrivial_mean) ' (' num2str(errorpTrivial_var) ')']);
disp(['EKF put        : ' num2str(errorpEKF_mean) ' (' num2str(errorpEKF_var) ')']);
disp(['UKF put        : ' num2str(errorpUKF_mean) ' (' num2str(errorpUKF_var) ')']);
disp(['PF put         : ' num2str(errorpPF_mean) ' (' num2str(errorpPF_var) ')']);
disp(['PF-EKF put     : ' num2str(errorpPFEKF_mean) ' (' num2str(errorpPFEKF_var) ')']);
disp(['PF-UKF put     : ' num2str(errorpPFUKF_mean) ' (' num2str(errorpPFUKF_var) ')']);
figure(10);
subplot(211);
p1=semilogy(errorcTrivial,'k','linewidth',lw); hold on;
p2=semilogy(errorcEKF,'y','linewidth',lw);
p3=semilogy(errorcUKF,'g','linewidth',lw);
p4=semilogy(errorcPF,'m','linewidth',lw);
p5=semilogy(errorcPFEKF,'r','linewidth',lw);
p6=semilogy(errorcPFUKF,'b','linewidth',lw); hold off;
legend([p1 p2 p3 p4 p5 p6],'trivial','EKF','UKF','PF','PF-EKF','PF-UKF');
ylabel('MSE','fontsize',12);
xlabel('experiment','fontsize',12);
title('CALL Options Mean Prediction Error','fontsize',14);
subplot(212);
p1=semilogy(errorpTrivial,'k','linewidth',lw); hold on;
p2=semilogy(errorpEKF,'y','linewidth',lw);
p3=semilogy(errorpUKF,'g','linewidth',lw);
p4=semilogy(errorpPF,'m','linewidth',lw);
p5=semilogy(errorpPFEKF,'r','linewidth',lw);
p6=semilogy(errorpPFUKF,'b','linewidth',lw); hold off;
legend([p1 p2 p3 p4 p5 p6],'trivial','EKF','UKF','PF','PF-EKF','PF-UKF');
ylabel('MSE','fontsize',12);
xlabel('experiment','fontsize',12);
title('PUT Options Mean Prediction Error','fontsize',14);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美三级日韩三级国产三级| 天堂在线一区二区| 九九热在线视频观看这里只有精品| 精品视频1区2区| av电影一区二区| 一区二区三区四区在线免费观看| 91原创在线视频| 奇米影视一区二区三区小说| 久久久精品蜜桃| 成人av网址在线观看| 一区二区三区小说| 亚洲精品高清视频在线观看| 欧美日韩高清不卡| 国产精品香蕉一区二区三区| 专区另类欧美日韩| 7777精品伊人久久久大香线蕉| 国产一区中文字幕| 亚洲综合另类小说| 国产视频亚洲色图| 欧美日韩三级一区二区| 99久久精品国产麻豆演员表| 看国产成人h片视频| 国产亚洲人成网站| 国产日韩欧美一区二区三区乱码| 91麻豆国产在线观看| 91久久一区二区| 韩日欧美一区二区三区| 亚洲在线成人精品| 日本美女视频一区二区| 亚洲精品国产精华液| 亚洲成人你懂的| 国产精品久久久久久久裸模| 日韩三级av在线播放| av成人免费在线| 欧美视频在线播放| av成人老司机| 欧美日韩国产高清一区| 精品国产一区二区三区忘忧草| 91久久免费观看| 久久众筹精品私拍模特| av一区二区不卡| 欧美三级中文字| 26uuu精品一区二区在线观看| 久久久国产精品麻豆| 亚洲自拍偷拍网站| 国内成+人亚洲+欧美+综合在线| 不卡av在线网| 日韩欧美在线影院| 亚洲女人的天堂| 亚洲人午夜精品天堂一二香蕉| 视频一区视频二区在线观看| 丰满白嫩尤物一区二区| 国产乱子轮精品视频| 9i看片成人免费高清| 日韩一区二区在线免费观看| 国产精品超碰97尤物18| 美脚の诱脚舐め脚责91| 韩国v欧美v日本v亚洲v| 在线观看中文字幕不卡| 欧美另类久久久品| 911精品产国品一二三产区| 国产精品入口麻豆九色| 中文字幕亚洲不卡| 亚洲在线一区二区三区| 风间由美一区二区三区在线观看| 欧美日韩国产一级片| 亚洲欧美视频在线观看| 国产成人一级电影| 成人毛片老司机大片| 一本色道久久综合亚洲91| 欧美亚洲国产一卡| 亚洲同性gay激情无套| 国产成人在线视频播放| 久久久一区二区三区捆绑**| 久久91精品国产91久久小草| 91超碰这里只有精品国产| 五月婷婷综合网| 国产福利精品导航| 久久久久久久综合色一本| 韩国午夜理伦三级不卡影院| 日韩三级免费观看| 日本不卡一区二区三区高清视频| 欧美日韩精品欧美日韩精品| 夜夜嗨av一区二区三区四季av| 91网站黄www| 中文字幕一区二区三区在线播放| 国产成人免费在线视频| 中文字幕成人av| 亚洲成人福利片| 欧美日韩一卡二卡| 日韩精品成人一区二区在线| 51精品久久久久久久蜜臀| 免费视频一区二区| 久久久久久97三级| 成人av在线电影| 亚洲男人电影天堂| 欧美日韩五月天| 久久精品72免费观看| 欧美精品一区二区精品网| 国产精品白丝jk黑袜喷水| 国产精品天干天干在观线| 99国内精品久久| 污片在线观看一区二区| 欧美videos中文字幕| 一区二区三区成人| 欧美精品九九99久久| 国产裸体歌舞团一区二区| 日韩一区在线播放| 制服丝袜av成人在线看| 国产一区二区三区不卡在线观看| 中文字幕一区二区视频| 欧美精品一二三区| 国产精品自拍网站| 亚洲国产视频在线| 欧美性欧美巨大黑白大战| 奇米一区二区三区| 国产精品久久久久国产精品日日| 欧美色偷偷大香| 国产美女一区二区三区| 亚洲影视在线播放| 久久久久久麻豆| 欧美日韩1234| 成人综合婷婷国产精品久久| 亚洲午夜电影在线| 久久你懂得1024| 欧美精品高清视频| av中文字幕不卡| 久久99久久精品欧美| 一区二区三区 在线观看视频| 精品伦理精品一区| 欧美日韩精品一区二区三区| 成人精品一区二区三区四区| 日本一区中文字幕| 一级中文字幕一区二区| 欧美国产视频在线| 日韩三级在线观看| 91超碰这里只有精品国产| 色哟哟一区二区三区| 国产一区二区三区免费在线观看| 一卡二卡三卡日韩欧美| 欧美激情艳妇裸体舞| 日韩片之四级片| 555夜色666亚洲国产免| 欧美怡红院视频| 波多野结衣中文字幕一区二区三区| 麻豆一区二区三区| 五月天一区二区三区| 亚洲九九爱视频| 亚洲欧洲av一区二区三区久久| 日韩欧美中文字幕一区| 91精品婷婷国产综合久久性色| 91免费国产在线| 成人免费黄色在线| 国产高清精品网站| 国产精品911| 国产高清精品久久久久| 激情综合色综合久久综合| 国产大陆a不卡| 懂色av一区二区夜夜嗨| 激情综合五月婷婷| 国产一区二区三区在线观看免费| 蜜臀av亚洲一区中文字幕| 午夜影院在线观看欧美| 午夜a成v人精品| 婷婷亚洲久悠悠色悠在线播放| 亚洲国产精品一区二区www| 一区二区国产视频| 亚洲第一二三四区| 五月综合激情网| 久久精品国产亚洲一区二区三区 | 日韩av网站免费在线| 午夜精品免费在线| 青青草国产成人99久久| 免费成人结看片| 国产在线一区观看| 国产不卡视频一区二区三区| 高清av一区二区| 一本到高清视频免费精品| 一本大道久久a久久综合| 欧美日韩视频在线观看一区二区三区| 欧美精品久久久久久久久老牛影院| 欧美精品丝袜久久久中文字幕| 欧美一区永久视频免费观看| 福利一区二区在线| 色综合天天综合| 国产91丝袜在线播放0| 成人av网址在线| 欧美色视频一区| 日韩欧美国产系列| 欧美日韩另类一区| 欧美mv和日韩mv的网站| 国产欧美一区二区精品仙草咪| 成人免费在线视频| 午夜婷婷国产麻豆精品| 国产精品一区二区你懂的| 91免费看`日韩一区二区| 日韩一区二区不卡| 亚洲私人黄色宅男| 老司机一区二区| 色噜噜狠狠色综合欧洲selulu|