?? encode.m
字號:
% encode - generates a biometric template from the normalised iris region,
% also generates corresponding noise mask
%
% Usage:
% [template, mask] = encode(polar_array,noise_array, nscales,...
% minWaveLength, mult, sigmaOnf)
%
% Arguments:
% polar_array - normalised iris region
% noise_array - corresponding normalised noise region map
% nscales - number of filters to use in encoding
% minWaveLength - base wavelength
% mult - multicative factor between each filter
% sigmaOnf - bandwidth parameter
%
% Output:
% template - the binary iris biometric template
% mask - the binary iris noise mask
%
% Author:
% Libor Masek
% masekl01@csse.uwa.edu.au
% School of Computer Science & Software Engineering
% The University of Western Australia
% November 2003
function [template, mask] = encode(polar_array,noise_array, nscales, minWaveLength, mult, sigmaOnf)
% convolve normalised region with Gabor filters
[E0 filtersum] = gaborconvolve(polar_array, nscales, minWaveLength, mult, sigmaOnf);
length = size(polar_array,2)*2*nscales;
template = zeros(size(polar_array,1), length);
length2 = size(polar_array,2);
h = 1:size(polar_array,1);
%create the iris template
mask = zeros(size(template));
for k=1:nscales
E1 = E0{k};
%Phase quantisation
H1 = real(E1) > 0;
H2 = imag(E1) > 0;
% if amplitude is close to zero then
% phase data is not useful, so mark off
% in the noise mask
H3 = abs(E1) < 0.0001;
for i=0:(length2-1)
ja = double(2*nscales*(i));
%construct the biometric template
template(h,ja+(2*k)-1) = H1(h, i+1);
template(h,ja+(2*k)) = H2(h,i+1);
%create noise mask
mask(h,ja+(2*k)-1) = noise_array(h, i+1) | H3(h, i+1);
mask(h,ja+(2*k)) = noise_array(h, i+1) | H3(h, i+1);
end
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -