亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? j48.java

?? wekaUT是 university texas austin 開發的基于weka的半指導學習(semi supervised learning)的分類器
?? JAVA
?? 第 1 頁 / 共 2 頁
字號:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    J48.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.trees.j48;import java.util.*;import weka.core.*;import weka.classifiers.*;/** * Class for generating an unpruned or a pruned C4.5 decision tree. * For more information, see<p> * * Ross Quinlan (1993). <i>C4.5: Programs for Machine Learning</i>,  * Morgan Kaufmann Publishers, San Mateo, CA. </p> * * Valid options are: <p> * * -U <br> * Use unpruned tree.<p> * * -C confidence <br> * Set confidence threshold for pruning. (Default: 0.25) <p> * * -M number <br> * Set minimum number of instances per leaf. (Default: 2) <p> * * -R <br> * Use reduced error pruning. No subtree raising is performed. <p> * * -N number <br> * Set number of folds for reduced error pruning. One fold is * used as the pruning set. (Default: 3) <p> * * -B <br> * Use binary splits for nominal attributes. <p> * * -S <br> * Don't perform subtree raising. <p> * * -L <br> * Do not clean up after the tree has been built. <p> * * -A <br> * If set, Laplace smoothing is used for predicted probabilites. <p> * * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class J48 extends DistributionClassifier implements OptionHandler,   Drawable, Matchable, Sourcable, WeightedInstancesHandler, Summarizable,  AdditionalMeasureProducer {  // To maintain the same version number after adding m_ClassAttribute  static final long serialVersionUID = -217733168393644444L;  /** The decision tree */  private ClassifierTree m_root;    /** Unpruned tree? */  private boolean m_unpruned = false;  /** Confidence level */  private float m_CF = 0.25f;  /** Minimum number of instances */  private int m_minNumObj = 2;  /** Determines whether probabilities are smoothed using      Laplace correction when predictions are generated */  private boolean m_useLaplace = false;  /** Use reduced error pruning? */  private boolean m_reducedErrorPruning = false;  /** Number of folds for reduced error pruning. */  private int m_numFolds = 3;  /** Binary splits on nominal attributes? */  private boolean m_binarySplits = false;  /** Subtree raising to be performed? */  private boolean m_subtreeRaising = true;  /** Cleanup after the tree has been built. */  boolean m_noCleanup = false;    /**   * Generates the classifier.   *   * @exception Exception if classifier can't be built successfully   */  public void buildClassifier(Instances instances)        throws Exception {    ModelSelection modSelection;	     if (m_binarySplits)      modSelection = new BinC45ModelSelection(m_minNumObj, instances);    else      modSelection = new C45ModelSelection(m_minNumObj, instances);    if (!m_reducedErrorPruning)      m_root = new C45PruneableClassifierTree(modSelection, !m_unpruned, m_CF,					    m_subtreeRaising, !m_noCleanup);    else      m_root = new PruneableClassifierTree(modSelection, !m_unpruned, m_numFolds,					   !m_noCleanup);    m_root.buildClassifier(instances);    if (m_binarySplits) {      ((BinC45ModelSelection)modSelection).cleanup();    } else {      ((C45ModelSelection)modSelection).cleanup();    }  }  /**   * Classifies an instance.   *   * @exception Exception if instance can't be classified successfully   */  public double classifyInstance(Instance instance) throws Exception {    return m_root.classifyInstance(instance);  }  /**    * Returns class probabilities for an instance.   *   * @exception Exception if distribution can't be computed successfully   */  public final double [] distributionForInstance(Instance instance)        throws Exception {    return m_root.distributionForInstance(instance, m_useLaplace);  }  /**   * Returns graph describing the tree.   *   * @exception Exception if graph can't be computed   */  public String graph() throws Exception {    return m_root.graph();  }  /**   * Returns tree in prefix order.   *   * @exception Exception if something goes wrong   */  public String prefix() throws Exception {        return m_root.prefix();  }  /**   * Returns tree as an if-then statement.   *   * @return the tree as a Java if-then type statement   * @exception Exception if something goes wrong   */  public String toSource(String className) throws Exception {    StringBuffer [] source = m_root.toSource(className);    return     "class " + className + " {\n\n"    +"  public static double classify(Object [] i)\n"    +"    throws Exception {\n\n"    +"    double p = Double.NaN;\n"    + source[0]  // Assignment code    +"    return p;\n"    +"  }\n"    + source[1]  // Support code    +"}\n";  }  /**   * Returns an enumeration describing the available options.   *   * Valid options are: <p>   *   * -U <br>   * Use unpruned tree.<p>   *   * -C confidence <br>   * Set confidence threshold for pruning. (Default: 0.25) <p>   *   * -M number <br>   * Set minimum number of instances per leaf. (Default: 2) <p>   *   * -R <br>   * Use reduced error pruning. No subtree raising is performed. <p>   *   * -N number <br>   * Set number of folds for reduced error pruning. One fold is   * used as the pruning set. (Default: 3) <p>   *   * -B <br>   * Use binary splits for nominal attributes. <p>   *   * -S <br>   * Don't perform subtree raising. <p>   *   * -L <br>   * Do not clean up after the tree has been built.   *   * -A <br>   * If set, Laplace smoothing is used for predicted probabilites. <p>   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(9);    newVector.	addElement(new Option("\tUse unpruned tree.",			      "U", 0, "-U"));    newVector.	addElement(new Option("\tSet confidence threshold for pruning.\n" +			      "\t(default 0.25)",			      "C", 1, "-C <pruning confidence>"));    newVector.	addElement(new Option("\tSet minimum number of instances per leaf.\n" +			      "\t(default 2)",			      "M", 1, "-M <minimum number of instances>"));    newVector.	addElement(new Option("\tUse reduced error pruning.",			      "R", 0, "-R"));    newVector.	addElement(new Option("\tSet number of folds for reduced error\n" +			      "\tpruning. One fold is used as pruning set.\n" +			      "\t(default 3)",			      "N", 1, "-N <number of folds>"));    newVector.	addElement(new Option("\tUse binary splits only.",			      "B", 0, "-B"));    newVector.        addElement(new Option("\tDon't perform subtree raising.",			      "S", 0, "-S"));    newVector.        addElement(new Option("\tDo not clean up after the tree has been built.",			      "L", 0, "-L"));   newVector.        addElement(new Option("\tLaplace smoothing for predicted probabilities.",			      "A", 0, "-A"));    return newVector.elements();  }  /**   * Parses a given list of options.   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        // Other options    String minNumString = Utils.getOption('M', options);    if (minNumString.length() != 0) {      m_minNumObj = Integer.parseInt(minNumString);    } else {      m_minNumObj = 2;    }    m_binarySplits = Utils.getFlag('B', options);    m_useLaplace = Utils.getFlag('A', options);    // Pruning options    m_unpruned = Utils.getFlag('U', options);    m_subtreeRaising = !Utils.getFlag('S', options);    m_noCleanup = Utils.getFlag('L', options);    if ((m_unpruned) && (!m_subtreeRaising)) {      throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!");    }    m_reducedErrorPruning = Utils.getFlag('R', options);    if ((m_unpruned) && (m_reducedErrorPruning)) {      throw new Exception("Unpruned tree and reduced error pruning can't be selected " +			  "simultaneously!");    }    String confidenceString = Utils.getOption('C', options);    if (confidenceString.length() != 0) {      if (m_reducedErrorPruning) {	throw new Exception("Setting the confidence doesn't make sense " +			    "for reduced error pruning.");      } else if (m_unpruned) {	throw new Exception("Doesn't make sense to change confidence for unpruned "			    +"tree!");      } else {	m_CF = (new Float(confidenceString)).floatValue();	if ((m_CF <= 0) || (m_CF >= 1)) {	  throw new Exception("Confidence has to be greater than zero and smaller " +			      "than one!");	}      }    } else {      m_CF = 0.25f;    }    String numFoldsString = Utils.getOption('N', options);    if (numFoldsString.length() != 0) {      if (!m_reducedErrorPruning) {	throw new Exception("Setting the number of folds" +			    " doesn't make sense if" +			    " reduced error pruning is not selected.");      } else {	m_numFolds = Integer.parseInt(numFoldsString);      }    } else {      m_numFolds = 3;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产人成亚洲第一网站在线播放| 亚洲一区二区高清| 亚洲小说欧美激情另类| 国产高清不卡一区二区| 欧美性一二三区| 欧美激情中文字幕一区二区| 天堂一区二区在线免费观看| 国产成人精品免费| 欧美一区二区三区免费| 亚洲永久免费视频| 成人免费毛片嘿嘿连载视频| ww久久中文字幕| 日韩和欧美的一区| 欧美日韩在线综合| 中文字幕日韩精品一区| 国产成都精品91一区二区三| 欧美一区二区三区日韩视频| 亚洲一区在线观看网站| 色菇凉天天综合网| 一区二区三区在线免费视频 | 精品国产污污免费网站入口| 亚洲国产一区视频| 欧洲亚洲精品在线| 亚洲一区二区在线播放相泽| 色偷偷成人一区二区三区91| 亚洲欧洲精品一区二区三区| av男人天堂一区| 国产精品福利一区二区| 99视频在线观看一区三区| 国产欧美一区在线| 风间由美性色一区二区三区| 久久久久久久国产精品影院| 国产成人午夜精品影院观看视频| 久久久亚洲高清| 国产成人精品一区二区三区四区 | 久久国内精品视频| 91精品国产91综合久久蜜臀| 丝袜脚交一区二区| 欧美一区二区播放| 极品少妇一区二区| 欧美高清在线一区| 91蝌蚪porny| 亚洲成a人片在线不卡一二三区| 欧美日免费三级在线| 亚洲风情在线资源站| 91精品婷婷国产综合久久性色| 久久精品免费看| 久久久国产一区二区三区四区小说| 极品少妇一区二区| 中文字幕av不卡| 91久久精品一区二区三| 视频一区二区中文字幕| 日韩欧美国产麻豆| 国产伦精品一区二区三区免费| 国产日韩欧美在线一区| 99精品欧美一区| 一区二区国产视频| 欧美一区二区三区思思人| 国产成人h网站| 一区二区三区免费网站| 欧美精品aⅴ在线视频| 久久精品国产亚洲一区二区三区| 久久先锋影音av鲁色资源| 91在线观看美女| 天堂av在线一区| 国产精品成人免费精品自在线观看| 欧美日韩国产一区| 精品一区二区三区的国产在线播放 | 久久女同性恋中文字幕| 91在线免费播放| 久久99热狠狠色一区二区| 综合激情网...| 精品欧美久久久| 91丨九色丨蝌蚪丨老版| 久久精品国产久精国产爱| 一区精品在线播放| 中文字幕一区av| 欧美一级黄色大片| 色老头久久综合| 高清在线成人网| 日韩av中文字幕一区二区| 综合亚洲深深色噜噜狠狠网站| 日韩午夜激情免费电影| 欧亚洲嫩模精品一区三区| 国产成人免费在线视频| 日韩国产一区二| 亚洲精品中文在线观看| 久久一区二区三区四区| 欧美浪妇xxxx高跟鞋交| 色综合久久久网| 高清不卡一区二区在线| 久99久精品视频免费观看| 亚洲成人高清在线| 亚洲激情图片小说视频| 国产精品不卡一区| 国产精品免费人成网站| 久久久久久久久97黄色工厂| 3d成人h动漫网站入口| 在线精品国精品国产尤物884a| 成人午夜激情视频| 国产999精品久久久久久绿帽| 国内精品视频一区二区三区八戒 | 成人网男人的天堂| 国产资源精品在线观看| 老司机一区二区| 伦理电影国产精品| 精品在线观看视频| 蜜桃精品在线观看| 免费欧美日韩国产三级电影| 奇米888四色在线精品| 成人app软件下载大全免费| 国产乱妇无码大片在线观看| 久久99蜜桃精品| 国产一区二区三区在线观看免费视频 | 国产伦理精品不卡| 国产成人午夜99999| 国产凹凸在线观看一区二区| 国产精品1024久久| 成人午夜在线免费| 成人99免费视频| 色偷偷88欧美精品久久久| 欧美亚洲一区三区| 欧美一级欧美一级在线播放| 日韩三级视频中文字幕| 精品国产在天天线2019| 久久夜色精品国产噜噜av | 欧美va在线播放| 久久久久久综合| 国产精品久久久久精k8| 亚洲美女视频一区| 丝袜国产日韩另类美女| 精品一区二区三区免费视频| 成人深夜在线观看| 欧美午夜影院一区| 欧美电视剧在线看免费| 亚洲国产精品v| 亚洲综合免费观看高清完整版在线 | 色香蕉成人二区免费| 欧美欧美欧美欧美| 久久久亚洲精华液精华液精华液| 中文字幕欧美日韩一区| 亚洲国产日韩a在线播放| 日韩不卡免费视频| 盗摄精品av一区二区三区| 日本丰满少妇一区二区三区| 日韩美女在线视频| 亚洲欧美综合另类在线卡通| 日韩精品免费专区| 成年人网站91| 8x8x8国产精品| 国产精品久久久久永久免费观看| 一区二区三区在线视频免费观看 | 亚洲香肠在线观看| 国内精品伊人久久久久av影院| 99re热视频这里只精品| 日韩无一区二区| 亚洲女女做受ⅹxx高潮| 激情综合亚洲精品| 欧洲一区二区三区免费视频| 国产亚洲欧美一区在线观看| 亚洲高清免费一级二级三级| 成人小视频免费观看| 精品成人免费观看| 亚洲已满18点击进入久久| 国产69精品久久久久毛片| 91精品国产一区二区三区蜜臀| 国产精品系列在线| 国内精品伊人久久久久影院对白| 欧美视频三区在线播放| 欧美极品美女视频| 热久久国产精品| 欧美午夜免费电影| 亚洲欧美日韩国产一区二区三区| 麻豆精品在线看| 欧美日韩免费观看一区二区三区| 国产精品家庭影院| 国产麻豆精品theporn| 欧美一级高清大全免费观看| 亚洲一区二区视频| 色综合天天综合| 欧美激情自拍偷拍| 国产麻豆精品久久一二三| 欧美一区二区三区啪啪| 亚洲大片免费看| 色综合久久中文字幕| 国产精品二三区| 99视频热这里只有精品免费| 久久精品夜色噜噜亚洲a∨| 国产综合一区二区| 久久久久久久久久久99999| 久久99精品久久久久久动态图| 91精品国产综合久久小美女| 亚洲v精品v日韩v欧美v专区 | 亚洲成人综合在线| 欧美性高清videossexo| 一区二区三区四区高清精品免费观看 | 国产精品视频一二| 成人美女视频在线看| 国产精品嫩草影院com| 成人激情av网|