?? letter.arff
字號:
% 1. TITLE: % Letter Image Recognition Data % % The objective is to identify each of a large number of black-and-white% rectangular pixel displays as one of the 26 capital letters in the English% alphabet. The character images were based on 20 different fonts and each% letter within these 20 fonts was randomly distorted to produce a file of% 20,000 unique stimuli. Each stimulus was converted into 16 primitive% numerical attributes (statistical moments and edge counts) which were then% scaled to fit into a range of integer values from 0 through 15. We% typically train on the first 16000 items and then use the resulting model% to predict the letter category for the remaining 4000. See the article% cited above for more details.% % 2.USE IN STATLOG% 2.1 Testing Mode% Train and Test% % 2.2 Special PreProcessing% No% % 2.3 Test Results% Error Rate TIME% Algorithm Train Test Train Test% -------------------------------------------- % Alloc80 0.065 0.064 39575 ?% KNN 0 0.068 15 2135% LVQ 0.057 0.079 1487 48% QuaDisc 0.101 0.113 3736 1223% Cn2 0.021 0.115 40458 52% BayTree 0.015 0.124 276 7% NewId 0 0.128 1056 2% IndCart 0.010 0.130 1098 1020% C4.5 0.042 0.132 309 292% Dipol92 0.167 0.176 1303 80% Radial 0.220 0.233 ? ?% LogDisc 0.234 0.234 5062 39% Ac2 0 0.245 2529 92% Castle 0.237 0.245 9455 2933 % Kohonen 0.218 0.252 ? ?% Cal5 0.158 0.253 1033 8% Smart 0.287 0.295 400919 184% Discrim 0.297 0.302 326 84% BackProp 0.323 0.327 277445 22% Bayes 0.516 0.529 75 18% Itrule 0.585 0.594 22325 69% Default 0.955 0.960 ? ?% Cascade 1.0% Cart 1.000% % 3. SOURCE Information and Paste Usage% 3.1 Source% -- Creator: David J. Slate% -- Odesta Corporation; 1890 Maple Ave; Suite 115; Evanston, IL 60201% -- Donor: David J. Slate (dave@math.nwu.edu) (708) 491-3867 % -- Date: January, 1991% % 3.2 Past Usage:% -- P. W. Frey and D. J. Slate (Machine Learning Vol 6 #2 March 91):% "Letter Recognition Using Holland-style Adaptive Classifiers".% % The research for this article investigated the ability of several% variations of Holland-style adaptive classifier systems to learn to% correctly guess the letter categories associated with vectors of 16% integer attributes extracted from raster scan images of the letters.% The best accuracy obtained was a little over 80%. It would be% interesting to see how well other methods do with the same data.% % % 4. DATASET DESCRIPTION% Number of Instances: % 20000% Train 15000% Test 5000% % Number of Attributes: % 16 (numeric features)% % NUMBER of CLASSES : 26 % capital letter (26 values from A to Z)% % Class Distribution:% 789 A 766 B 736 C 805 D 768 E 775 F 773 G% 734 H 755 I 747 J 739 K 761 L 792 M 783 N% 753 O 803 P 783 Q 758 R 748 S 796 T 813 U% 764 V 752 W 787 X 786 Y 734 Z% % Attribute Information:% % 1. x-box horizontal position of box (integer)% 2. y-box vertical position of box (integer)% 3. width width of box (integer)% 4. high height of box (integer)% 5. onpix total # on pixels (integer)% 6. x-bar mean x of on pixels in box (integer)% 7. y-bar mean y of on pixels in box (integer)% 8. x2bar mean x variance (integer)% 9. y2bar mean y variance (integer)% 10. xybar mean x y correlation (integer)% 11. x2ybr mean of x * x * y (integer)% 12. xy2br mean of x * y * y (integer)% 13. x-ege mean edge count left to right (integer)% 14. xegvy correlation of x-ege with y (integer)% 15. y-ege mean edge count bottom to top (integer)% 16. yegvx correlation of y-ege with x (integer)% % Missing Attribute Values: None% % CONTACTS% statlog-adm@ncc.up.pt% bob@stams.strathclyde.ac.uk% % % ================================================================================% % Num Instances: 20000% Num Attributes: 17% Num Continuous: 16 (Int 16 / Real 0)% Num Nominal: 1% Missing values: 0 / 0.0%%% name type enum ints real missing distinct (1)% 1 'x-box' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 2 'y-box' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 3 'width' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 4 'high' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 5 'onpix' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 6 'x-bar' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 7 'y-bar' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 8 'x2bar' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 9 'y2bar' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 10 'xybar' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 11 'x2ybr' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 12 'xy2br' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 13 'x-ege' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 14 'xegvy' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 15 'y-ege' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 16 'yegvx' Int 0% 100% 0% 0 / 0% 16 / 0% 0% % 17 'class' Enum 0% 100% 0% 0 / 0% 26 / 0% 0% % %%%%% Relabeled values in attribute 'class'% From: 1 To: A % From: 2 To: B % From: 3 To: C % From: 4 To: D % From: 5 To: E % From: 6 To: F % From: 7 To: G % From: 8 To: H % From: 9 To: I % From: 10 To: J % From: 11 To: K % From: 12 To: L % From: 13 To: M % From: 14 To: N % From: 15 To: O % From: 16 To: P % From: 17 To: Q % From: 18 To: R % From: 19 To: S % From: 20 To: T % From: 21 To: U % From: 22 To: V % From: 23 To: W % From: 24 To: X % From: 25 To: Y % From: 26 To: Z %@relation letter@attribute 'x-box' integer@attribute 'y-box' integer@attribute 'width' integer@attribute 'high' integer@attribute 'onpix' integer@attribute 'x-bar' integer@attribute 'y-bar' integer@attribute 'x2bar' integer@attribute 'y2bar' integer@attribute 'xybar' integer@attribute 'x2ybr' integer@attribute 'xy2br' integer@attribute 'x-ege' integer@attribute 'xegvy' integer@attribute 'y-ege' integer@attribute 'yegvx' integer@attribute 'class' { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}@data2,4,4,3,2,7,8,2,9,11,7,7,1,8,5,6,Z4,7,5,5,5,5,9,6,4,8,7,9,2,9,7,10,P7,10,8,7,4,8,8,5,10,11,2,8,2,5,5,10,S4,9,5,7,4,7,7,13,1,7,6,8,3,8,0,8,H6,7,8,5,4,7,6,3,7,10,7,9,3,8,3,7,H4,7,5,5,3,4,12,2,5,13,7,5,1,10,1,7,F6,10,8,8,4,7,8,2,5,10,7,8,5,8,1,8,N1,0,2,0,1,6,10,7,2,7,5,8,2,7,4,9,R5,9,7,6,7,7,7,2,4,9,8,9,7,6,2,8,M1,0,2,1,1,5,7,8,6,7,6,6,2,8,3,8,D2,7,4,5,1,9,8,4,2,5,13,8,3,10,0,8,V3,11,5,8,3,13,4,5,3,12,1,8,2,6,4,9,A3,7,5,5,5,8,7,4,4,7,6,7,4,6,8,13,K3,8,5,6,4,8,8,4,5,9,5,4,3,8,3,7,D8,11,9,8,6,7,8,3,6,10,5,7,4,6,6,8,S7,11,10,8,9,9,7,3,6,10,4,7,5,6,4,9,H5,5,5,7,3,3,7,6,12,7,6,15,0,8,7,6,E2,4,5,3,2,7,8,2,9,11,7,7,1,8,5,6,Z4,7,6,5,4,8,9,8,4,7,7,7,3,8,3,8,O4,6,4,7,5,8,8,6,2,7,7,11,3,9,5,8,Q5,10,7,9,3,8,5,9,8,6,4,8,3,8,4,8,Q3,7,3,5,1,1,1,5,5,0,1,6,0,8,0,8,L1,1,2,1,0,7,9,4,2,7,13,8,2,10,0,8,V2,1,3,2,1,8,7,3,8,6,6,8,2,8,5,8,X8,9,10,8,12,7,6,5,5,7,6,8,7,10,6,9,V5,10,8,7,11,9,6,2,2,8,4,8,10,5,3,6,M5,6,5,4,3,4,9,1,7,10,10,6,1,10,2,4,Y2,5,4,4,3,9,6,4,6,10,4,6,2,8,3,8,D3,8,5,6,5,7,7,4,8,7,7,8,3,8,5,10,E4,7,6,5,4,11,7,3,5,10,1,4,5,9,1,7,N4,10,6,7,2,9,4,3,2,8,1,8,3,7,3,8,A3,4,4,3,3,7,7,6,7,7,6,5,2,8,3,7,D4,8,5,6,4,9,9,6,4,7,5,8,3,8,10,7,Z3,5,5,3,2,5,9,3,4,10,8,8,5,8,0,7,N4,11,5,8,2,7,7,4,4,7,6,8,3,8,4,8,X4,9,6,7,7,6,8,1,4,10,8,7,6,11,4,5,F6,9,5,4,2,6,9,4,5,4,4,10,5,10,2,8,N3,4,4,7,1,0,1,6,6,0,0,6,0,8,0,8,L4,5,6,4,3,7,8,2,5,10,6,6,5,9,1,7,N1,3,3,2,1,7,8,2,9,11,6,8,1,8,5,7,Z6,9,6,4,3,7,6,4,4,9,9,5,3,10,4,4,Y0,0,0,1,0,7,7,4,4,7,6,8,0,8,0,8,I8,11,8,8,9,4,10,2,3,9,8,7,9,13,3,5,W2,1,3,2,2,7,9,5,6,7,9,9,3,9,1,8,U6,10,4,5,2,8,7,6,5,9,4,7,5,9,5,9,O3,4,4,3,2,5,12,3,6,11,9,4,1,11,1,5,T4,5,6,4,4,7,6,5,5,8,5,8,3,7,5,6,O4,7,6,10,9,8,9,4,0,8,7,6,5,11,5,7,P2,3,2,2,1,4,9,5,6,12,9,10,1,9,2,7,C3,7,4,5,2,6,6,6,6,10,8,11,2,10,4,9,G4,8,6,6,8,8,7,5,3,7,7,7,6,10,8,9,B3,4,4,3,3,5,7,4,7,7,6,11,3,8,5,9,K8,8,8,6,5,3,10,3,4,11,10,8,8,10,2,6,W2,6,4,4,2,9,11,3,4,4,11,8,2,10,1,8,V4,6,6,4,5,7,11,2,2,7,8,8,6,11,1,8,W5,11,7,8,7,6,6,6,5,6,5,8,6,6,7,10,H4,9,4,7,4,7,8,3,12,9,6,8,0,8,7,7,Z1,4,2,3,1,9,6,2,6,12,4,9,1,7,1,7,J2,4,4,3,1,5,11,3,4,13,7,4,1,9,1,7,F5,10,7,8,6,7,7,8,5,7,6,5,4,8,3,7,D3,5,5,4,2,8,7,3,8,11,5,7,1,9,5,8,S8,13,7,8,3,7,8,3,9,13,5,6,2,9,5,5,T4,9,5,7,5,8,9,8,4,7,8,7,4,7,4,9,O2,6,3,4,3,8,7,5,9,7,7,7,1,8,7,8,Z3,9,4,7,3,6,7,10,6,7,6,7,2,8,9,10,B3,2,4,3,2,6,10,4,5,10,9,5,2,9,3,6,F6,9,10,7,11,10,5,3,2,9,4,8,11,6,4,7,M2,6,4,4,1,8,15,1,5,6,11,8,0,8,0,8,T7,11,5,6,3,6,7,5,4,7,4,7,5,8,5,7,O2,4,3,3,2,5,7,4,6,6,6,11,3,8,4,10,K1,4,3,3,1,7,7,2,9,11,6,8,1,8,5,8,Z3,4,4,3,1,5,13,3,6,12,9,4,1,11,1,5,T4,10,7,8,6,7,10,2,3,6,9,8,8,11,1,8,W3,5,5,3,2,6,2,2,2,5,2,8,2,6,3,6,A2,2,3,3,2,8,8,6,1,5,6,9,2,9,5,10,Q9,10,7,14,6,8,7,4,2,12,6,8,3,9,13,6,Z4,5,6,7,5,9,10,3,2,8,7,7,3,10,8,6,H5,9,8,6,8,6,6,3,4,7,5,8,7,10,7,6,R1,7,0,4,0,7,7,4,4,7,6,8,0,8,0,8,I2,4,4,3,3,7,8,4,4,9,5,8,2,6,3,10,R5,10,7,7,5,7,9,4,6,5,8,10,6,10,1,7,U4,7,4,5,3,7,6,12,4,7,12,8,3,9,0,8,U7,10,5,5,2,6,8,6,8,11,7,11,2,8,5,9,C5,9,6,7,4,8,7,8,5,7,6,8,3,8,3,8,O7,13,5,7,3,6,8,6,8,10,6,10,1,8,8,8,E5,10,7,7,5,10,6,4,7,11,3,6,4,6,4,8,D5,7,6,5,3,4,8,5,7,9,8,9,3,9,2,5,U3,4,5,3,3,9,7,3,5,11,3,6,2,7,3,9,R2,4,3,3,2,7,7,5,7,7,6,9,2,8,5,10,E6,10,6,8,4,6,7,6,7,10,8,11,2,9,5,9,G5,9,7,6,6,10,6,2,6,11,3,8,3,8,4,12,B4,10,7,7,2,8,7,3,0,7,0,8,3,7,2,8,A1,1,3,2,1,6,10,1,6,8,11,8,1,11,2,8,Y2,4,4,6,4,8,11,3,3,5,8,9,2,11,5,6,Y5,10,6,8,5,8,6,9,4,7,5,8,3,8,3,8,O7,10,7,7,5,7,6,7,8,11,6,11,2,11,5,9,G5,9,7,7,5,8,3,1,2,6,2,7,3,5,4,7,A3,4,4,3,1,5,9,5,7,12,9,10,1,10,3,7,C4,5,6,7,6,7,8,4,1,8,6,6,4,10,8,5,H4,11,6,8,8,7,7,3,4,7,6,8,7,10,8,6,R4,7,6,5,4,8,6,5,5,8,7,7,3,7,4,6,J4,7,5,5,3,8,7,12,1,6,9,8,8,6,0,8,M3,9,5,7,3,7,11,2,3,6,11,9,2,10,1,8,V2,3,4,2,2,8,8,3,5,9,4,7,2,6,3,10,R3,8,5,6,3,7,12,4,6,7,11,8,2,12,1,8,T5,8,7,9,7,8,9,4,5,7,7,8,5,7,10,10,J3,5,5,3,2,8,7,3,8,11,5,7,1,9,4,8,S6,11,8,9,9,9,7,5,2,6,6,10,8,8,5,10,G2,3,3,2,2,9,6,4,6,10,4,6,2,8,2,9,D2,0,2,1,1,8,6,6,5,6,5,9,2,8,5,10,G5,8,7,10,7,10,5,4,4,8,3,6,3,5,8,8,Z6,11,6,8,4,5,7,10,10,7,6,6,3,8,4,8,D1,3,3,2,1,6,3,2,2,5,2,8,1,6,1,7,A1,0,1,0,0,7,13,1,4,7,10,8,0,8,0,8,T2,3,3,1,1,7,7,6,5,7,6,9,2,9,4,10,G1,3,2,1,0,6,4,1,7,8,2,10,0,7,2,9,L6,9,8,7,8,8,4,7,3,7,6,7,8,7,6,3,W0,1,1,2,1,7,7,1,6,7,6,8,0,8,2,8,I6,8,9,7,10,6,8,5,3,6,5,8,13,9,5,8,M4,9,4,4,2,11,4,4,5,12,3,8,2,7,6,12,Q2,3,3,4,2,8,7,5,8,4,6,8,0,8,8,8,S9,14,8,8,5,7,4,4,8,9,5,9,3,8,9,9,Q3,6,5,4,1,8,8,4,2,6,14,8,3,10,0,8,V5,10,5,8,6,6,8,9,5,6,5,7,2,8,5,11,R7,9,5,13,5,7,8,5,3,11,7,7,3,9,11,6,Z4,9,5,7,5,5,8,6,4,8,7,9,3,8,7,10,P8,9,8,6,6,2,12,2,2,10,10,8,7,11,1,7,W3,10,5,7,2,7,7,0,9,14,6,8,0,8,1,8,I3,7,3,5,2,1,12,4,5,12,11,7,0,8,1,6,F5,8,6,10,8,7,9,5,5,7,6,7,4,9,9,7,F4,9,5,7,2,10,6,2,8,14,3,8,0,7,0,8,J5,9,5,7,2,3,12,4,4,10,12,7,3,10,1,8,V6,9,8,6,9,7,8,6,5,7,5,8,8,9,8,6,M9,13,10,8,6,11,11,7,3,4,7,9,9,13,3,6,M4,8,4,6,4,7,7,7,4,10,6,8,3,8,3,6,O1,3,3,1,1,8,8,2,5,14,5,8,1,7,0,8,J3,8,4,6,2,3,6,6,11,7,7,14,0,8,7,7,E6,9,8,5,4,9,3,3,2,9,3,9,8,2,1,9,M9,13,10,7,6,4,9,4,6,10,10,11,5,8,4,6,K5,9,7,6,6,5,10,5,5,10,8,3,1,10,3,7,P5,10,7,8,4,10,3,2,3,8,1,7,2,7,3,8,A2,5,3,3,2,6,7,5,5,9,7,10,2,9,4,9,G5,9,5,4,3,10,7,4,5,7,9,5,4,11,2,7,V2,2,3,3,2,8,7,3,8,6,6,7,2,8,5,7,X1,1,2,1,0,7,4,2,0,7,2,8,2,7,1,8,A6,10,8,8,5,8,6,3,9,12,4,9,3,6,8,9,Z4,9,5,6,5,7,6,7,6,6,8,10,2,11,9,7,S8,9,11,7,8,10,6,2,5,9,3,6,10,8,3,9,M4,10,4,8,4,7,8,3,12,9,6,8,0,8,7,7,Z4,8,5,6,3,7,7,12,1,7,9,8,8,6,0,8,M12,13,11,7,5,8,11,3,3,5,10,7,8,12,1,6,W7,11,7,8,5,5,10,0,8,11,9,6,1,9,3,4,T2,7,3,5,2,3,7,6,10,7,6,14,0,8,7,8,E1,3,0,4,0,7,7,4,4,7,6,8,0,8,0,8,I5,9,5,4,3,5,9,3,6,9,8,9,5,7,3,7,H4,9,5,7,3,6,8,7,7,7,10,9,3,9,1,8,U4,7,4,4,1,7,7,5,4,7,6,8,3,8,4,8,X3,3,4,2,1,4,12,3,2,10,11,7,2,11,1,8,V5,9,6,4,4,7,9,2,3,7,8,6,8,11,2,7,W3,4,5,3,3,10,6,3,7,10,3,6,2,8,3,9,D4,2,5,4,4,7,8,4,6,7,5,7,3,7,4,8,R3,5,5,4,2,8,7,3,7,10,6,7,1,9,5,8,S7,10,6,5,3,7,8,2,7,11,6,6,2,9,5,6,F5,7,6,6,6,8,6,5,4,7,5,8,7,9,6,3,N3,5,5,8,3,11,5,3,5,10,2,7,2,7,5,11,Z3,5,4,7,2,7,7,4,14,10,6,8,0,8,8,8,Z1,10,0,7,0,7,7,4,4,7,6,8,0,8,0,8,I8,12,6,9,5,7,11,3,3,13,5,4,3,9,9,9,J2,3,3,4,3,8,8,5,2,8,8,9,2,9,5,8,Q5,10,7,8,4,5,13,5,4,13,8,3,2,10,2,5,F2,7,2,5,1,13,2,7,5,14,2,11,0,7,0,8,J
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -