亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? vehicle.arff

?? 是UCI數據庫中的一些有代表性的數據集
?? ARFF
?? 第 1 頁 / 共 5 頁
字號:
% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!IMPORTANT!!!!!!!!!!!!!!!!!!!!!!!!!!!!% %         This dataset comes from the Turing Institute, Glasgow, Scotland.%         If you use this dataset in any publication you must acknowledge this%         source.% % !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!% % NAME%         vehicle silhouettes% % PURPOSE%         to classify a given silhouette as one of four types of vehicle,%         using  a set of features extracted from the silhouette. The%         vehicle may be viewed from one of many different angles.  % % PROBLEM TYPE%         classification%         % SOURCE%         Drs.Pete Mowforth and Barry Shepherd%         Turing Institute%         George House%         36 North Hanover St.%         Glasgow%         G1 2AD% % CONTACT%         Alistair Sutherland%         Statistics Dept.%         Strathclyde University%         Livingstone Tower%         26 Richmond St.%         GLASGOW G1 1XH%         Great Britain%         %         Tel: 041 552 4400 x3033%         %         Fax: 041 552 4711 %         %         e-mail: alistair@uk.ac.strathclyde.stams% % HISTORY%         This data was originally gathered at the TI in 1986-87 by%         JP Siebert. It was partially financed by Barr and Stroud Ltd.%         The original purpose was to find a method of distinguishing%         3D objects within a 2D image by application of an ensemble of%         shape feature extractors to the 2D silhouettes of the objects.%         Measures of shape features extracted from example silhouettes%         of objects to be discriminated were used to generate a class-%         ification rule tree by means of computer induction.%          This object recognition strategy was successfully used to %         discriminate between silhouettes of model cars, vans and buses%         viewed from constrained elevation but all angles of rotation.%          The rule tree classification performance compared favourably%         to MDC (Minimum Distance Classifier) and k-NN (k-Nearest Neigh-%         bour) statistical classifiers in terms of both error rate and%         computational efficiency. An investigation of these rule trees%         generated by example indicated that the tree structure was %         heavily influenced by the orientation of the objects, and grouped%         similar object views into single decisions.% % DESCRIPTION%          The features were extracted from the silhouettes by the HIPS%         (Hierarchical Image Processing System) extension BINATTS, which %         extracts a combination of scale independent features utilising%         both classical moments based measures such as scaled variance,%         skewness and kurtosis about the major/minor axes and heuristic%         measures such as hollows, circularity, rectangularity and%         compactness.%          Four "Corgie" model vehicles were used for the experiment:%         a double decker bus, Cheverolet van, Saab 9000 and an Opel Manta 400.%         This particular combination of vehicles was chosen with the %         expectation that the bus, van and either one of the cars would%         be readily distinguishable, but it would be more difficult to%         distinguish between the cars.%          The images were acquired by a camera looking downwards at the%         model vehicle from a fixed angle of elevation (34.2 degrees%         to the horizontal). The vehicles were placed on a diffuse%         backlit surface (lightbox). The vehicles were painted matte black%         to minimise highlights. The images were captured using a CRS4000%         framestore connected to a vax 750. All images were captured with%         a spatial resolution of 128x128 pixels quantised to 64 greylevels.%         These images were thresholded to produce binary vehicle silhouettes,%         negated (to comply with the processing requirements of BINATTS) and%         thereafter subjected to shrink-expand-expand-shrink HIPS modules to%         remove "salt and pepper" image noise.%          The vehicles were rotated and their angle of orientation was measured%         using a radial graticule beneath the vehicle. 0 and 180 degrees%         corresponded to "head on" and "rear" views respectively while 90 and%         270 corresponded to profiles in opposite directions. Two sets of%         60 images, each set covering a full 360 degree rotation, were captured%         for each vehicle. The vehicle was rotated by a fixed angle between %         images. These datasets are known as e2 and e3 respectively.%          A further two sets of images, e4 and e5, were captured with the camera %         at elevations of 37.5 degs and 30.8 degs respectively. These sets%         also contain 60 images per vehicle apart from e4.van which contains%         only 46 owing to the difficulty of containing the van in the image%         at some orientations.% % ATTRIBUTES%         %         COMPACTNESS     (average perim)**2/area%         %         CIRCULARITY     (average radius)**2/area%         %         DISTANCE CIRCULARITY    area/(av.distance from border)**2%         %         RADIUS RATIO    (max.rad-min.rad)/av.radius%         %         PR.AXIS ASPECT RATIO    (minor axis)/(major axis)%         %         MAX.LENGTH ASPECT RATIO (length perp. max length)/(max length)%         %         SCATTER RATIO   (inertia about minor axis)/(inertia about major axis)%         %         ELONGATEDNESS           area/(shrink width)**2%         %         PR.AXIS RECTANGULARITY  area/(pr.axis length*pr.axis width)%         %         MAX.LENGTH RECTANGULARITY area/(max.length*length perp. to this)%         %         SCALED VARIANCE         (2nd order moment about minor axis)/area%         ALONG MAJOR AXIS%         %         SCALED VARIANCE         (2nd order moment about major axis)/area%         ALONG MINOR AXIS %         %         SCALED RADIUS OF GYRATION       (mavar+mivar)/area%         %         SKEWNESS ABOUT  (3rd order moment about major axis)/sigma_min**3%         MAJOR AXIS%         %         SKEWNESS ABOUT  (3rd order moment about minor axis)/sigma_maj**3%         MINOR AXIS%                 %         KURTOSIS ABOUT  (4th order moment about major axis)/sigma_min**4%         MINOR AXIS  %                 %         KURTOSIS ABOUT  (4th order moment about minor axis)/sigma_maj**4%         MAJOR AXIS%         %         HOLLOWS RATIO   (area of hollows)/(area of bounding polygon)%         %          Where sigma_maj**2 is the variance along the major axis and%         sigma_min**2 is the variance along the minor axis, and%         %         area of hollows= area of bounding poly-area of object %         %          The area of the bounding polygon is found as a side result of%         the computation to find the maximum length. Each individual%         length computation yields a pair of calipers to the object%         orientated at every 5 degrees. The object is propagated into%         an image containing the union of these calipers to obtain an%         image of the bounding polygon. %         % NUMBER OF CLASSES% %         4       OPEL, SAAB, BUS, VAN% % NUMBER OF EXAMPLES% %                 Total no. = 946%                 %                 No. in each class%                 %                   opel 240%                   saab 240%                   bus  240%                   van  226%                 %                 %                 100 examples are being kept by Strathclyde for validation.%                 So StatLog partners will receive 846 examples.% % NUMBER OF ATTRIBUTES% %                 No. of atts. = 18% %         % BIBLIOGRAPHY% %           Turing Institute Research Memorandum TIRM-87-018 "Vehicle%          Recognition Using Rule Based Methods" by Siebert,JP (March 1987)% % @relation vehicle@attribute 'COMPACTNESS' real@attribute 'CIRCULARITY' real@attribute 'DISTANCE CIRCULARITY' real@attribute 'RADIUS RATIO' real@attribute 'PR.AXIS ASPECT RATIO' real@attribute 'MAX.LENGTH ASPECT RATIO' real@attribute 'SCATTER RATIO' real@attribute 'ELONGATEDNESS' real@attribute 'PR.AXIS RECTANGULARITY' real@attribute 'MAX.LENGTH RECTANGULARITY' real@attribute 'SCALED VARIANCE_MAJOR' real@attribute 'SCALED VARIANCE_MINOR' real@attribute 'SCALED RADIUS OF GYRATION'  real@attribute 'SKEWNESS ABOUT_MAJOR' real@attribute 'SKEWNESS ABOUT_MINOR' real@attribute 'KURTOSIS ABOUT_MAJOR' real@attribute 'KURTOSIS ABOUT_MINOR' real@attribute 'HOLLOWS RATIO' real@attribute 'Class' {opel,saab,bus,van}@data95,48,83,178,72,10,162,42,20,159,176,379,184,70,6,16,187,197,van91,41,84,141,57,9,149,45,19,143,170,330,158,72,9,14,189,199,van104,50,106,209,66,10,207,32,23,158,223,635,220,73,14,9,188,196,saab

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区三区成人| 国产福利91精品一区| 国产真实乱对白精彩久久| av在线不卡观看免费观看| 欧美日韩成人综合| 一区二区三区免费在线观看| 国产成人一区二区精品非洲| 欧美一二区视频| 亚洲123区在线观看| 97se亚洲国产综合自在线| 26uuuu精品一区二区| 日日夜夜免费精品| 欧美午夜宅男影院| 尤物在线观看一区| 91丝袜美女网| 亚洲欧美电影一区二区| 成人av资源在线| 国产视频在线观看一区二区三区| 久草热8精品视频在线观看| 欧洲视频一区二区| 亚洲精品菠萝久久久久久久| 国产福利一区二区三区在线视频| 精品国产乱子伦一区| 久久精品国产亚洲高清剧情介绍| 在线电影欧美成精品| 天天操天天干天天综合网| 欧美在线你懂的| 亚洲一区在线观看网站| 欧美性猛交xxxx黑人交| 亚洲自拍另类综合| 欧美吞精做爰啪啪高潮| 午夜精品久久久久久久99水蜜桃 | 国产ts人妖一区二区| 日韩精品一区二区三区在线观看| 天天综合色天天综合| 欧美一区二区高清| 精品一区二区三区免费| 国产日韩欧美在线一区| 国产sm精品调教视频网站| 亚洲国产激情av| 色哟哟欧美精品| 亚洲国产wwwccc36天堂| 日韩欧美电影在线| 国产久卡久卡久卡久卡视频精品| 国产欧美视频一区二区三区| 不卡一二三区首页| 亚洲午夜电影在线| 日韩欧美视频在线| 国产精品一区二区久久不卡 | 蜜臀va亚洲va欧美va天堂| 日韩精品一区二区三区中文不卡| 国内久久精品视频| 中文字幕一区二区三区色视频| 色屁屁一区二区| 香蕉加勒比综合久久| 精品99999| 91在线精品一区二区三区| 亚洲午夜在线观看视频在线| 精品久久久久久久久久久院品网 | 国产成人午夜精品5599| 亚洲日韩欧美一区二区在线| 欧美日韩一区不卡| 国产不卡视频在线播放| 一区二区国产盗摄色噜噜| 欧美精品一区男女天堂| 99热精品国产| 久久99深爱久久99精品| 亚洲欧洲制服丝袜| 制服视频三区第一页精品| 懂色av一区二区三区蜜臀| 亚洲第一激情av| 国产日韩欧美不卡| 7777精品伊人久久久大香线蕉的 | 国产精品女人毛片| 欧美日韩mp4| 国产高清不卡一区二区| 日韩av不卡在线观看| 亚洲国产精品精华液ab| 6080亚洲精品一区二区| hitomi一区二区三区精品| 日韩国产欧美在线播放| 国产精品白丝在线| 337p日本欧洲亚洲大胆精品| 色婷婷狠狠综合| 高清在线不卡av| 久久精品国产色蜜蜜麻豆| 亚洲图片有声小说| 中文字幕在线观看一区二区| 欧美大片一区二区三区| 9191成人精品久久| 欧美伊人久久久久久午夜久久久久| 成人妖精视频yjsp地址| 国产麻豆欧美日韩一区| 日产国产欧美视频一区精品| 一区二区三区四区视频精品免费 | xnxx国产精品| 日韩欧美另类在线| 在线不卡a资源高清| 色伊人久久综合中文字幕| 国产v日产∨综合v精品视频| 国产综合色视频| 极品少妇一区二区三区精品视频 | 偷拍日韩校园综合在线| 亚洲丝袜自拍清纯另类| 国产精品久久精品日日| 国产精品久久久久久久久动漫| 久久新电视剧免费观看| 日韩精品在线看片z| 日韩精品专区在线影院重磅| 在线播放中文字幕一区| 欧美一区二区三区在线观看| 欧美丰满嫩嫩电影| 欧美一级黄色录像| 日韩欧美一区中文| 日韩一区二区在线看片| 日韩欧美成人激情| 久久午夜电影网| 久久精品夜色噜噜亚洲a∨| 久久久久久久久久久久电影| 久久久久国产精品厨房| 国产精品久久久爽爽爽麻豆色哟哟| 国产偷国产偷亚洲高清人白洁| 国产午夜精品久久| 亚洲色图制服诱惑| 亚洲成人精品一区二区| 日韩成人午夜电影| 国产乱一区二区| 不卡区在线中文字幕| 色婷婷国产精品| 777a∨成人精品桃花网| 久久久久久久久久久久久久久99| 国产清纯在线一区二区www| 国产精品国产三级国产普通话三级| 亚洲美腿欧美偷拍| 首页亚洲欧美制服丝腿| 国产麻豆精品久久一二三| aaa国产一区| 91 com成人网| 中文字幕国产精品一区二区| 一级特黄大欧美久久久| 免费视频最近日韩| 成人aaaa免费全部观看| 欧美日韩一区二区三区免费看| 欧美变态tickling挠脚心| 国产精品久久久久久亚洲毛片| 一区二区三区加勒比av| 久久精品99国产国产精| 99视频国产精品| 欧美一区二区女人| 亚洲欧美一区二区不卡| 蜜臀91精品一区二区三区 | 一区二区三区日韩精品| 亚洲一二三四区不卡| 日韩和欧美一区二区三区| 国产一区二区三区av电影| 在线视频观看一区| 国产亚洲精久久久久久| 亚洲二区在线观看| 懂色av一区二区三区免费观看 | 日本sm残虐另类| youjizz国产精品| 91.com在线观看| 亚洲视频图片小说| 韩国女主播成人在线观看| 在线中文字幕一区| 国产欧美日韩另类视频免费观看| 五月天丁香久久| 色综合天天综合给合国产| 日韩精品一区二区三区蜜臀| 伊人婷婷欧美激情| 高清在线成人网| 精品免费视频一区二区| 亚洲成人激情综合网| 91色porny在线视频| 久久伊人蜜桃av一区二区| 视频在线在亚洲| 日本精品视频一区二区三区| 国产日韩综合av| 久久99精品国产麻豆婷婷| 欧美日韩一区二区三区不卡 | 麻豆成人av在线| 欧美三级中文字幕| 自拍偷拍国产精品| thepron国产精品| 久久精品夜色噜噜亚洲aⅴ| 精品一区二区三区蜜桃| 欧美高清视频一二三区| 午夜不卡av免费| 欧美日韩视频一区二区| 亚洲一区二区三区在线| 91黄色小视频| 一区二区三区四区亚洲| 色婷婷久久久久swag精品| 综合欧美一区二区三区| 99re视频精品| 亚洲欧美国产三级| 91精彩视频在线观看| 依依成人精品视频| 欧美日韩视频第一区| 三级一区在线视频先锋 |