亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? spice.txt

?? spice中支持多層次元件模型仿真的可單獨運行的插件源碼
?? TXT
?? 第 1 頁 / 共 5 頁
字號:
SUBJECT: mainTITLE: Table of ContentsTEXT: HTEXT: HTEXT: HTEXT: HTEXT: HTEXT: HTEXT: HSUBTOPIC: SPICE:INTRODUCTIONSUBTOPIC: SPICE:CIRCUIT DESCRIPTIONSUBTOPIC: SPICE:CIRCUIT ELEMENTS AND MODELSSUBTOPIC: SPICE:ANALYSES AND OUTPUT CONTROLSUBTOPIC: SPICE:INTERACTIVE INTERPRETERSUBTOPIC: SPICE:BIBLIOGRAPHYSUBTOPIC: SPICE:APPENDIX ASUBTOPIC: SPICE:APPENDIX BSUBJECT: INTRODUCTIONTITLE: INTRODUCTIONTEXT: HTEXT: H _1.  _I_N_T_R_O_D_U_C_T_I_O_NTEXT: HTEXT: HTEXT: H      SPICE is a general-purpose circuit  simulation  programTEXT: H for  nonlinear  dc,  nonlinear transient, and linear ac ana-TEXT: H lyses.  Circuits may contain resistors,  capacitors,  induc-TEXT: H tors,  mutual  inductors,  independent  voltage  and currentTEXT: H sources, four types of dependent sources, lossless and lossyTEXT: H transmission lines (two separate implementations), switches,TEXT: H uniform distributed RC lines, and the five most common  sem-TEXT: H iconductor  devices:  diodes, BJTs, JFETs, MESFETs, and MOS-TEXT: H FETs.TEXT: HTEXT: H      The SPICE3 version is based  directly  on  SPICE  2G.6.TEXT: H While  SPICE3 is being developed to include new features, itTEXT: H continues to support those  capabilities  and  models  whichTEXT: H remain in extensive use in the SPICE2 program.TEXT: HTEXT: H      SPICE has built-in models for  the  semiconductor  dev-TEXT: H ices,  and  the  user  need specify only the pertinent modelTEXT: H parameter values.  The model for the BJT  is  based  on  theTEXT: H integral-charge  model  of Gummel and Poon;  however, if theTEXT: H Gummel- Poon parameters are not specified, the model reducesTEXT: H to  the  simpler  Ebers-Moll model.  In either case, charge-TEXT: H storage effects, ohmic resistances, and a  current-dependentTEXT: H output  conductance may be included.  The diode model can beTEXT: H used for either junction diodes or Schottky barrier  diodes.TEXT: H The  JFET  model  is  based on the FET model of Shichman andTEXT: H Hodges.   Six  MOSFET  models  are  implemented:   MOS1   isTEXT: H described by a square-law I-V characteristic, MOS2 [1] is anTEXT: H analytical model, while MOS3 [1] is a semi-empirical  model;TEXT: H MOS6  [2]  is a simple analytic model accurate in the short-TEXT: H channel region; MOS4 [3,  4]  and  MOS5  [5]  are  the  BSIMTEXT: H (Berkeley Short-channel IGFET Model) and BSIM2.  MOS2, MOS3,TEXT: H and MOS4 include second-order effects such as channel-lengthTEXT: H modulation,   subthreshold   conduction,  scattering-limitedTEXT: H velocity  saturation,  small-size   effects,   and   charge-TEXT: H controlled capacitances.SUBTOPIC: SPICE:TYPES OF ANALYSISSUBTOPIC: SPICE:ANALYSIS AT DIFFERENT TEMPERATURESSUBTOPIC: SPICE:CONVERGENCESUBJECT: TYPES OF ANALYSISTITLE: TYPES OF ANALYSISTEXT: HTEXT: H _1._1.  _T_Y_P_E_S _O_F _A_N_A_L_Y_S_I_STEXT: HSUBTOPIC: SPICE:DC AnalysisSUBTOPIC: SPICE:AC SmallSignal AnalysisSUBTOPIC: SPICE:Transient AnalysisSUBTOPIC: SPICE:PoleZero AnalysisSUBTOPIC: SPICE:SmallSignal Distortion AnalysisSUBTOPIC: SPICE:Sensitivity AnalysisSUBTOPIC: SPICE:Noise AnalysisSUBJECT: DC AnalysisTITLE: DC AnalysisTEXT: HTEXT: H _1._1._1.  _D_C _A_n_a_l_y_s_i_sTEXT: HTEXT: HTEXT: H      The dc analysis portion  of  SPICE  determines  the  dcTEXT: H operating  point  of  the circuit with inductors shorted andTEXT: H capacitors opened.  The dc analysis options are specified onTEXT: H the  .DC,  .TF,  and  .OP  control  lines.  A dc analysis isTEXT: H automatically performed prior to  a  transient  analysis  toTEXT: H determine  the transient initial conditions, and prior to anTEXT: H ac  small-signal  analysis  to  determine  the   linearized,TEXT: H small-signal  models  for  nonlinear devices.  If requested,TEXT: H the dc small-signal value of a transfer function  (ratio  ofTEXT: H output variable to input source), input resistance, and out-TEXT: H put resistance is also computed as a part of  the  dc  solu-TEXT: H tion.   The  dc  analysis  can  also  be used to generate dcTEXT: H transfer curves:  a specified independent voltage or currentTEXT: H source  is  stepped  over  a user-specified range and the dcTEXT: H output variables  are  stored  for  each  sequential  sourceTEXT: H value.TEXT: HSUBJECT: AC SmallSignal AnalysisTITLE: AC Small-Signal AnalysisTEXT: HTEXT: H _1._1._2.  _A_C _S_m_a_l_l-_S_i_g_n_a_l _A_n_a_l_y_s_i_sTEXT: HTEXT: HTEXT: H      The ac small-signal portion of SPICE  computes  the  acTEXT: H output  variables  as  a function of frequency.  The programTEXT: H first computes the dc operating point  of  the  circuit  andTEXT: H determines  linearized,  small-signal  models for all of theTEXT: H nonlinear devices in the circuit.  The resultant linear cir-TEXT: H cuit  is  then  analyzed over a user-specified range of fre-TEXT: H quencies.   The  desired  output  of  an  ac  small-  signalTEXT: H analysis is usually a transfer function (voltage gain, tran-TEXT: H simpedance, etc).  If the circuit has only one ac input,  itTEXT: H is  convenient to set that input to unity and zero phase, soTEXT: H that output variables have the same value  as  the  transferTEXT: H function of the output variable with respect to the input.TEXT: HSUBJECT: Transient AnalysisTITLE: Transient AnalysisTEXT: HTEXT: H _1._1._3.  _T_r_a_n_s_i_e_n_t _A_n_a_l_y_s_i_sTEXT: HTEXT: H      The transient analysis portion of  SPICE  computes  theTEXT: H transient  output  variables  as  a  function of time over aTEXT: H user-specified time interval.  The  initial  conditions  areTEXT: H automatically  determined  by  a  dc  analysis.  All sourcesTEXT: H which are not time dependent (for example,  power  supplies)TEXT: H are  set  to their dc value.  The transient time interval isTEXT: H specified on a .TRAN control line.TEXT: HSUBJECT: PoleZero AnalysisTITLE: Pole-Zero AnalysisTEXT: HTEXT: H _1._1._4.  _P_o_l_e-_Z_e_r_o _A_n_a_l_y_s_i_sTEXT: HTEXT: HTEXT: H      The pole-zero analysis portion of  SPICE  computes  theTEXT: H poles and/or zeros in the small-signal ac transfer function.TEXT: H The program first computes the dc operating point  and  thenTEXT: H determines  the  linearized, small-signal models for all theTEXT: H nonlinear devices in the circuit.  This circuit is then usedTEXT: H to find the poles and zeros of the transfer function.TEXT: HTEXT: H      Two types of transfer functions are allowed  :  one  ofTEXT: H the  form  (output voltage)/(input voltage) and the other ofTEXT: H the form (output voltage)/(input current).  These two  typesTEXT: H of  transfer  functions cover all the cases and one can findTEXT: H the poles/zeros of functions like input/output impedance andTEXT: H voltage  gain.   The input and output ports are specified asTEXT: H two pairs of nodes.TEXT: HTEXT: H      The pole-zero analysis works  with  resistors,  capaci-TEXT: H tors,   inductors,  linear-controlled  sources,  independentTEXT: H sources, BJTs,  MOSFETs,  JFETs  and  diodes.   TransmissionTEXT: H lines are not supported.TEXT: HTEXT: H      The method used in the analysis is a sub-optimal numer-TEXT: H ical  search.  For large circuits it may take a considerableTEXT: H time or fail to find all poles and  zeros.   For  some  cir-TEXT: H cuits,  the  method  becomes  "lost"  and finds an excessiveTEXT: H number of poles or zeros.TEXT: HSUBJECT: SmallSignal Distortion AnalysisTITLE: Small-Signal Distortion AnalysisTEXT: HTEXT: H _1._1._5.  _S_m_a_l_l-_S_i_g_n_a_l _D_i_s_t_o_r_t_i_o_n _A_n_a_l_y_s_i_sTEXT: HTEXT: HTEXT: H      The  distortion  analysis  portion  of  SPICE  computesTEXT: H steady-state harmonic and intermodulation products for smallTEXT: H input signal magnitudes.  If signals of a  single  frequencyTEXT: H are  specified  as  the  input  to  the circuit, the complexTEXT: H values of the second and third harmonics are  determined  atTEXT: H every  point  in  the  circuit.  If there are signals of twoTEXT: H frequencies input to the circuit, the analysis finds out theTEXT: H complex  values  of  the  circuit  variables  at the sum andTEXT: H difference of the input frequencies, and at  the  differenceTEXT: H of  the  smaller  frequency  from the second harmonic of theTEXT: H larger frequency.TEXT: HTEXT: H      Distortion analysis is supported for the following non-TEXT: H linear  devices: diodes (DIO), BJT, JFET, MOSFETs (levels 1,TEXT: H 2, 3, 4/BSIM1, 5/BSIM2, and 6) and MESFETS.  All linear dev-TEXT: H ices are automatically supported by distortion analysis.  IfTEXT: H there are switches present in the circuit, the analysis con-TEXT: H tinues  to  be  accurate provided the switches do not changeTEXT: H state under the small excitations used for distortion calcu-TEXT: H lations.TEXT: HSUBJECT: Sensitivity AnalysisTITLE: Sensitivity AnalysisTEXT: HTEXT: H _1._1._6.  _S_e_n_s_i_t_i_v_i_t_y _A_n_a_l_y_s_i_sTEXT: HTEXT: HTEXT: H      Spice3 will calculate  either  the  DC  operating-pointTEXT: H sensitivity  or the AC small-signal sensitivity of an outputTEXT: H variable with respect to all  circuit  variables,  includingTEXT: H model  parameters.   Spice  calculates  the difference in anTEXT: H output variable (either a node voltage or a branch  current)TEXT: H by  perturbing  each parameter of each device independently.TEXT: H Since the method is a numerical approximation,  the  resultsTEXT: H may  demonstrate  second  order  affects in highly sensitiveTEXT: H parameters, or may fail to show very low but non-zero sensi-TEXT: H tivity.   Further, since each variable is perturb by a smallTEXT: H fraction of its value, zero-valued parameters are not analy-TEXT: H ized  (this  has  the  benefit of reducing what is usually aTEXT: H very large amount of data).TEXT: HSUBJECT: Noise AnalysisTITLE: Noise AnalysisTEXT: HTEXT: H _1._1._7.  _N_o_i_s_e _A_n_a_l_y_s_i_sTEXT: HTEXT: HTEXT: H      The noise  analysis  portion  of  SPICE  does  analysisTEXT: H device-generated noise for the given circuit.  When providedTEXT: H with an input source and an output port, the analysis calcu-TEXT: H lates the noise contributions of each device (and each noiseTEXT: H generator within the device) to the output port voltage.  ItTEXT: H also  calculates  the input noise to the circuit, equivalentTEXT: H to the output noise referred to the specified input  source.TEXT: H This  is done for every frequency point in a specified rangeTEXT: H - the calculated value of the noise corresponds to the spec-TEXT: H tral  density of the circuit variable viewed as a stationaryTEXT: H gaussian stochastic process.TEXT: HTEXT: H      After  calculating  the   spectral   densities,   noiseTEXT: H analysis  integrates  these  values  over the specified fre-TEXT: H quency range to arrive at the  total  noise  voltage/currentTEXT: H (over   this   frequency   range).   This  calculated  valueTEXT: H corresponds to the variance of the circuit  variable  viewedTEXT: H as a stationary gaussian process.SUBJECT: ANALYSIS AT DIFFERENT TEMPERATURESTITLE: ANALYSIS AT DIFFERENT TEMPERATURESTEXT: HTEXT: H _1._2.  _A_N_A_L_Y_S_I_S _A_T _D_I_F_F_E_R_E_N_T _T_E_M_P_E_R_A_T_U_R_E_STEXT: HTEXT: HTEXT: H      All input data for SPICE is assumed to have been  meas-TEXT: H                                     oTEXT: H ured  at a nominal temperature of 27 C, which can be changedTEXT: H by use of the TNOM parameter on the  .OPTION  control  line.TEXT: H This  value  can  further be overridden for any device whichTEXT: H models temperature effects by specifying the TNOM  parameterTEXT: H on the model itself.  The circuit simulation is performed atTEXT: H                    oTEXT: H a temperature of 27 C, unless overridden by a TEMP parameterTEXT: H on  the  .OPTION  control  line.   Individual  instances mayTEXT: H further override the circuit temperature through the specif-TEXT: H ication of a TEMP parameter on the instance.TEXT: HTEXT: H      Temperature dependent support is  provided  for  resis-TEXT: H tors,  diodes,  JFETs,  BJTs, and level 1, 2, and 3 MOSFETs.TEXT: H BSIM (levels 4 and 5) MOSFETs have an alternate  temperatureTEXT: H dependency  scheme which adjusts all of the model parametersTEXT: H before input to SPICE.  For details of the BSIM  temperatureTEXT: H adjustment, see [6] and [7].TEXT: HTEXT: HTEXT: H      Temperature appears explicitly in the exponential termsTEXT: H of  the BJT and diode model equations.  In addition, satura-TEXT: H tion currents have a built-in temperature  dependence.   TheTEXT: H temperature  dependence of the saturation current in the BJTTEXT: H models is determined by:TEXT: HTEXT: H                              XTITEXT: H                          |T |        | E q(T  T )|TEXT: H                            1            g   1  0TEXT: H          I (T ) = I (T ) |--|     exp|-----------|TEXT: H           S  1     S  0TEXT: H                          |T |        |k (T  - T )|TEXT: H                            0              1    0TEXT: HTEXT: HTEXT: HTEXT: H where k is Boltzmann's constant,  q  is  the  electronicTEXT: H charge, E  is the energy gap which is a model parameter,TEXT: H          GTEXT: H and XTI is the saturation current  temperature  exponentTEXT: H (also a model parameter, and usually equal to 3).TEXT: HTEXT: HTEXT: HTEXT: H      The temperature dependence of forward and reverse  betaTEXT: H is according to the formula:TEXT: HTEXT: H                                      XTBTEXT: H                                  |T |TEXT: H                                    1TEXT: H                    B(T ) = B(T ) |--|TEXT: H                       1       0TEXT: H                                  |T |TEXT: H                                    0TEXT: HTEXT: HTEXT: HTEXT: H where T  and T  are in degrees  Kelvin,  and  XTB  is  aTEXT: H        1      0TEXT: H user-supplied  model  parameter.  Temperature effects onTEXT: H beta are carried out by appropriate  adjustment  to  theTEXT: H values  of  B , I  , B , and I   (spice model parametersTEXT: H              F   SE   R       SCTEXT: H BF, ISE, BR, and ISC, respectively).TEXT: HTEXT: HTEXT: HTEXT: H      Temperature dependence of the saturation current in theTEXT: H junction diode model is determined by:TEXT: HTEXT: H                             XTITEXT: H                             ---TEXT: H                              NTEXT: H                         |T |        |  E q(T  T ) |TEXT: H                           1             g   1  0TEXT: H         I (T ) = I (T ) |--|     exp|-------------|TEXT: H          S  1     S  0TEXT: H                         |T |        |N k (T  - T )|TEXT: H                           0                1    0TEXT: HTEXT: HTEXT: HTEXT: H where N is the emission coefficient, which  is  a  modelTEXT: H parameter,  and  the other symbols have the same meaningTEXT: H as above.  Note that for Schottky  barrier  diodes,  the

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
视频在线观看一区二区三区| 极品少妇一区二区| 日本vs亚洲vs韩国一区三区| 国产在线精品不卡| 91官网在线免费观看| 精品国产制服丝袜高跟| 亚洲精品国久久99热| 国产精品一二三四五| 欧美亚洲一区二区在线观看| 国产精品无遮挡| 热久久久久久久| 欧美亚洲一区三区| 中文字幕视频一区二区三区久| 蜜臀av一区二区在线免费观看 | 国产精品视频麻豆| 青娱乐精品视频在线| 一本大道久久a久久精二百| 久久精品男人天堂av| 日韩成人精品在线观看| 在线看国产一区| 国产精品理论片在线观看| 国产在线播放一区| 日韩午夜小视频| 爽爽淫人综合网网站| 91福利在线导航| 亚洲欧美另类在线| av在线综合网| 国产目拍亚洲精品99久久精品| 蜜臀99久久精品久久久久久软件| 欧美四级电影在线观看| 亚洲国产日韩精品| 在线精品视频一区二区三四| 一区二区三区免费| 欧美无乱码久久久免费午夜一区| 一区二区三区蜜桃| 欧美在线你懂得| 亚洲v日本v欧美v久久精品| 欧美综合色免费| 夜夜亚洲天天久久| 欧美综合在线视频| 亚洲国产欧美在线| 欧美日韩精品免费观看视频| 午夜精品视频在线观看| 欧美日韩激情在线| 日韩激情视频网站| 日韩视频在线一区二区| 九色|91porny| 国产日韩精品一区二区浪潮av| 国产成人综合精品三级| 中文字幕欧美三区| 色婷婷av一区二区| 天天综合网 天天综合色| 日韩午夜激情免费电影| 国产又粗又猛又爽又黄91精品| 国产亚洲精品福利| 91视视频在线观看入口直接观看www | 91麻豆精品国产91久久久久 | **性色生活片久久毛片| 色先锋资源久久综合| 亚洲高清在线精品| 欧美精品一区二区在线观看| 国产成+人+日韩+欧美+亚洲| 亚洲视频 欧洲视频| 欧美日韩不卡一区二区| 久久er精品视频| 国产精品嫩草久久久久| 欧美亚洲国产bt| 精品一区二区免费视频| 中文字幕一区二区三区不卡| 欧美性xxxxxx少妇| 韩国av一区二区三区在线观看| 国产精品成人在线观看| 欧美日韩国产精选| 成人听书哪个软件好| 亚洲成人激情自拍| 国产欧美视频一区二区三区| 日本乱人伦一区| 久久97超碰色| 亚洲在线成人精品| 亚洲国产日韩a在线播放| 日韩一区二区三区视频在线观看| 99这里只有久久精品视频| 秋霞成人午夜伦在线观看| 一区在线观看视频| 久久综合九色综合久久久精品综合| 99久久99久久精品国产片果冻| 日韩精品三区四区| 亚洲精品中文在线影院| 2023国产精品| 欧美精品 国产精品| 91色九色蝌蚪| 国产高清精品久久久久| 日韩电影在线一区二区三区| 国产精品成人免费在线| 日韩精品资源二区在线| 欧美日韩激情一区二区| 99综合电影在线视频| 国内精品自线一区二区三区视频| 亚洲成a人片综合在线| 亚洲国产精品ⅴa在线观看| 日韩一区国产二区欧美三区| 在线免费一区三区| 色综合久久88色综合天天6| 顶级嫩模精品视频在线看| 韩国精品久久久| 麻豆极品一区二区三区| 五月天中文字幕一区二区| 一区二区三区欧美视频| 亚洲四区在线观看| 国产精品亲子伦对白| 精品免费国产二区三区| 91精品国产入口| 91精品国产品国语在线不卡| 欧美四级电影在线观看| 色婷婷久久久久swag精品| jlzzjlzz亚洲日本少妇| 99久久综合国产精品| 不卡高清视频专区| a亚洲天堂av| 91在线视频免费91| 99国产精品国产精品久久| 白白色亚洲国产精品| 国产很黄免费观看久久| 国产电影一区二区三区| 国产乱码精品一区二区三区av| 国产一区二区三区在线观看精品| 久久精品理论片| 激情深爱一区二区| 国产成人自拍在线| 成人在线视频一区| 97se亚洲国产综合自在线| 91视频在线看| 欧美精品久久一区| 欧美tickling网站挠脚心| 久久久噜噜噜久久人人看| 久久久99精品免费观看不卡| 欧美国产日本韩| 亚洲欧美偷拍另类a∨色屁股| 亚洲图片自拍偷拍| 精品制服美女丁香| 成人做爰69片免费看网站| 色一情一乱一乱一91av| 这里是久久伊人| 国产欧美一区二区三区鸳鸯浴 | 亚洲精品成人少妇| 天天做天天摸天天爽国产一区| 久久狠狠亚洲综合| 高清成人免费视频| 在线国产电影不卡| 日韩精品最新网址| 亚洲六月丁香色婷婷综合久久| 午夜精品久久久久久| 国内精品嫩模私拍在线| 99国产欧美久久久精品| 欧美一区二区三级| 中文字幕制服丝袜成人av| 天天色综合天天| 风间由美性色一区二区三区| 欧美日韩免费在线视频| 国产日本亚洲高清| 午夜精品福利在线| eeuss鲁片一区二区三区在线看| 欧美美女黄视频| 中文字幕一区二区三区不卡| 麻豆精品一区二区av白丝在线| 91丨porny丨最新| 久久综合视频网| 成人影视亚洲图片在线| 欧美日韩在线精品一区二区三区激情| 久久久一区二区三区| 日韩中文字幕91| 99久久精品一区| 久久伊人蜜桃av一区二区| 亚洲伊人色欲综合网| 粉嫩欧美一区二区三区高清影视| 欧美日韩一级二级三级| 国产精品国产三级国产有无不卡| 热久久一区二区| 欧美日韩大陆在线| 亚洲精品老司机| 99久久精品国产毛片| 久久免费午夜影院| 蜜臀av亚洲一区中文字幕| 欧美日韩免费在线视频| 亚洲男人的天堂av| 成人午夜免费视频| 国产欧美一区二区精品忘忧草 | 日韩午夜在线播放| 亚洲福利视频三区| 一本色道久久综合精品竹菊| 亚洲国产精品av| 高清成人免费视频| 中文字幕精品综合| 成人一区二区三区视频在线观看| 26uuu欧美| 国产一区二区在线观看视频| 日韩欧美国产精品| 老司机午夜精品99久久| 日韩片之四级片| 麻豆成人91精品二区三区|