亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mapredloadtest.java

?? Hadoop是一個用于運行應用程序在大型集群的廉價硬件設備上的框架。Hadoop為應用程序透明的提供了一組穩定/可靠的接口和數據運動。在 Hadoop中實現了Google的MapReduce算法
?? JAVA
?? 第 1 頁 / 共 2 頁
字號:
/** * Copyright 2006 The Apache Software Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * *     http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.hadoop.mapred;import org.apache.hadoop.fs.*;import org.apache.hadoop.io.*;import org.apache.hadoop.conf.*;import java.io.*;import java.util.*;/********************************************************** * MapredLoadTest generates a bunch of work that exercises * a Hadoop Map-Reduce system (and DFS, too).  It goes through * the following steps: * * 1) Take inputs 'range' and 'counts'. * 2) Generate 'counts' random integers between 0 and range-1. * 3) Create a file that lists each integer between 0 and range-1, *    and lists the number of times that integer was generated. * 4) Emit a (very large) file that contains all the integers *    in the order generated. * 5) After the file has been generated, read it back and count *    how many times each int was generated. * 6) Compare this big count-map against the original one.  If *    they match, then SUCCESS!  Otherwise, FAILURE! * * OK, that's how we can think about it.  What are the map-reduce * steps that get the job done? * * 1) In a non-mapred thread, take the inputs 'range' and 'counts'. * 2) In a non-mapread thread, generate the answer-key and write to disk. * 3) In a mapred job, divide the answer key into K jobs. * 4) A mapred 'generator' task consists of K map jobs.  Each reads *    an individual "sub-key", and generates integers according to *    to it (though with a random ordering). * 5) The generator's reduce task agglomerates all of those files *    into a single one. * 6) A mapred 'reader' task consists of M map jobs.  The output *    file is cut into M pieces. Each of the M jobs counts the  *    individual ints in its chunk and creates a map of all seen ints. * 7) A mapred job integrates all the count files into a single one. * **********************************************************/public class MapredLoadTest {    /**     * The RandomGen Job does the actual work of creating     * a huge file of assorted numbers.  It receives instructions     * as to how many times each number should be counted.  Then     * it emits those numbers in a crazy order.     *     * The map() function takes a key/val pair that describes     * a value-to-be-emitted (the key) and how many times it      * should be emitted (the value), aka "numtimes".  map() then     * emits a series of intermediate key/val pairs.  It emits     * 'numtimes' of these.  The key is a random number and the     * value is the 'value-to-be-emitted'.     *     * The system collates and merges these pairs according to     * the random number.  reduce() function takes in a key/value     * pair that consists of a crazy random number and a series     * of values that should be emitted.  The random number key     * is now dropped, and reduce() emits a pair for every intermediate value.     * The emitted key is an intermediate value.  The emitted value     * is just a blank string.  Thus, we've created a huge file     * of numbers in random order, but where each number appears     * as many times as we were instructed.     */    static class RandomGenMapper implements Mapper {        Random r = new Random();        public void configure(JobConf job) {        }        public void map(WritableComparable key, Writable val, OutputCollector out, Reporter reporter) throws IOException {            int randomVal = ((IntWritable) key).get();            int randomCount = ((IntWritable) val).get();            for (int i = 0; i < randomCount; i++) {                out.collect(new IntWritable(Math.abs(r.nextInt())), new IntWritable(randomVal));            }        }        public void close() {        }    }    /**     */    static class RandomGenReducer implements Reducer {        public void configure(JobConf job) {        }        public void reduce(WritableComparable key, Iterator it, OutputCollector out, Reporter reporter) throws IOException {            int keyint = ((IntWritable) key).get();            while (it.hasNext()) {                int val = ((IntWritable) it.next()).get();                out.collect(new UTF8("" + val), new UTF8(""));            }        }        public void close() {        }    }    /**     * The RandomCheck Job does a lot of our work.  It takes     * in a num/string keyspace, and transforms it into a     * key/count(int) keyspace.     *     * The map() function just emits a num/1 pair for every     * num/string input pair.     *     * The reduce() function sums up all the 1s that were     * emitted for a single key.  It then emits the key/total     * pair.     *     * This is used to regenerate the random number "answer key".     * Each key here is a random number, and the count is the     * number of times the number was emitted.     */    static class RandomCheckMapper implements Mapper {        public void configure(JobConf job) {        }        public void map(WritableComparable key, Writable val, OutputCollector out, Reporter reporter) throws IOException {            long pos = ((LongWritable) key).get();            UTF8 str = (UTF8) val;            out.collect(new IntWritable(Integer.parseInt(str.toString().trim())), new IntWritable(1));        }        public void close() {        }    }    /**     */    static class RandomCheckReducer implements Reducer {        public void configure(JobConf job) {        }                public void reduce(WritableComparable key, Iterator it, OutputCollector out, Reporter reporter) throws IOException {            int keyint = ((IntWritable) key).get();            int count = 0;            while (it.hasNext()) {                it.next();                count++;            }            out.collect(new IntWritable(keyint), new IntWritable(count));        }        public void close() {        }    }    /**     * The Merge Job is a really simple one.  It takes in     * an int/int key-value set, and emits the same set.     * But it merges identical keys by adding their values.     *     * Thus, the map() function is just the identity function     * and reduce() just sums.  Nothing to see here!     */    static class MergeMapper implements Mapper {        public void configure(JobConf job) {        }        public void map(WritableComparable key, Writable val, OutputCollector out, Reporter reporter) throws IOException {            int keyint = ((IntWritable) key).get();            int valint = ((IntWritable) val).get();            out.collect(new IntWritable(keyint), new IntWritable(valint));        }        public void close() {        }    }    static class MergeReducer implements Reducer {        public void configure(JobConf job) {        }                public void reduce(WritableComparable key, Iterator it, OutputCollector out, Reporter reporter) throws IOException {            int keyint = ((IntWritable) key).get();            int total = 0;            while (it.hasNext()) {                total += ((IntWritable) it.next()).get();            }            out.collect(new IntWritable(keyint), new IntWritable(total));        }        public void close() {        }    }    int range;    int counts;    Random r = new Random();    Configuration conf;    /**     * MapredLoadTest     */    public MapredLoadTest(int range, int counts, Configuration conf) throws IOException {        this.range = range;        this.counts = counts;        this.conf = conf;    }    /**     *      */    public void launch() throws IOException {        //        // Generate distribution of ints.  This is the answer key.        //

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
粉嫩一区二区三区性色av| 日韩欧美国产综合在线一区二区三区| 国产一区二区三区久久悠悠色av | 日韩精品久久久久久| 亚洲视频每日更新| 自拍偷拍国产精品| 亚洲欧美成人一区二区三区| 亚洲视频在线一区二区| 亚洲人精品午夜| 亚洲一区二区三区影院| 亚洲成人动漫在线观看| 图片区小说区区亚洲影院| 亚洲国产三级在线| 日韩一区精品视频| 久久99在线观看| 国产精品77777| av亚洲精华国产精华| 色一情一乱一乱一91av| 91福利资源站| 91麻豆精品久久久久蜜臀| 日韩一区二区三区av| 久久久精品影视| 亚洲人被黑人高潮完整版| 亚洲综合区在线| 日韩精品一级二级 | 一本一本大道香蕉久在线精品| 91丨porny丨最新| 欧美日韩免费电影| 久久亚洲欧美国产精品乐播| 国产精品免费av| 亚洲影院久久精品| 久久国产精品99精品国产 | 欧美性受极品xxxx喷水| 欧美日韩1234| 久久久亚洲综合| 一区二区三区四区精品在线视频| 视频一区二区中文字幕| 精品一区二区在线免费观看| av福利精品导航| 欧美巨大另类极品videosbest | 亚洲精品免费电影| 婷婷激情综合网| 国产**成人网毛片九色| 欧美日韩国产高清一区二区| 欧美mv日韩mv国产网站| 亚洲人成在线播放网站岛国| 热久久免费视频| 久久久亚洲高清| 亚洲精品久久久蜜桃| 久久激情五月激情| 色综合视频一区二区三区高清| 337p亚洲精品色噜噜| 国产精品乱码人人做人人爱| 日本强好片久久久久久aaa| 粉嫩一区二区三区在线看| 欧美精品久久99| 国产精品蜜臀av| 蜜桃久久精品一区二区| 91行情网站电视在线观看高清版| 欧美精品一区二区在线观看| 亚洲人成网站在线| 国产精品123| 欧美一区二区在线免费播放| 亚洲三级理论片| 国产一区二区精品在线观看| 欧美日韩精品免费观看视频 | 精品一区二区免费视频| 欧美伊人久久久久久久久影院 | 亚洲视频电影在线| 国产揄拍国内精品对白| 欧美日韩一区三区四区| 亚洲欧美在线视频| 国产乱码精品一区二区三区忘忧草 | 色综合天天综合| 久久婷婷成人综合色| 亚洲国产成人porn| 91美女视频网站| 中文字幕欧美国产| 国产综合色在线视频区| 777a∨成人精品桃花网| 亚洲一区二区欧美日韩 | 精品对白一区国产伦| 日韩中文字幕亚洲一区二区va在线| 99re热这里只有精品免费视频| 久久久久久亚洲综合| 久久精品国产亚洲a| 3d动漫精品啪啪1区2区免费| 亚洲小说欧美激情另类| 91高清视频在线| 亚洲欧美另类在线| 99精品一区二区| 国产精品色一区二区三区| 国产精品一区二区不卡| 在线成人av网站| 欧美大片在线观看| 亚洲人成精品久久久久| 成人高清免费观看| 久久免费午夜影院| 91捆绑美女网站| 国产女人18毛片水真多成人如厕| 欧美精品 国产精品| 亚洲香肠在线观看| 欧美日韩国产高清一区二区| 亚洲成人免费视| 欧美精品精品一区| 免费成人深夜小野草| 日韩欧美高清一区| 久草中文综合在线| 久久久精品综合| www.66久久| 亚洲欧美日韩在线不卡| 色999日韩国产欧美一区二区| 亚洲已满18点击进入久久| 欧美日韩免费观看一区二区三区 | 玖玖九九国产精品| 精品国产一区二区三区av性色| 久久99精品国产麻豆不卡| 精品国产乱码久久久久久浪潮| 国模无码大尺度一区二区三区| 久久人人爽人人爽| 成人sese在线| 亚洲一区视频在线观看视频| 欧美日韩国产高清一区二区三区| 免费在线成人网| 26uuu国产电影一区二区| 成人一区二区视频| 亚洲精品五月天| 7878成人国产在线观看| 激情综合色综合久久综合| 中文字幕久久午夜不卡| 99re6这里只有精品视频在线观看| 依依成人综合视频| 日韩限制级电影在线观看| 国产精品夜夜爽| 亚洲精品免费在线观看| 日韩一区二区在线观看视频播放| 国产精品一区二区不卡| 亚洲精品v日韩精品| 91精品久久久久久久99蜜桃| 国产一区二区三区香蕉| 亚洲欧美一区二区三区孕妇| 7777精品伊人久久久大香线蕉最新版| 精品亚洲porn| 亚洲精品国产无套在线观| 91精品福利在线一区二区三区 | 6080亚洲精品一区二区| 国产精品综合在线视频| 亚洲黄色av一区| 精品免费一区二区三区| 99久久精品情趣| 蜜桃视频免费观看一区| 综合色天天鬼久久鬼色| 3atv一区二区三区| 93久久精品日日躁夜夜躁欧美| 日本中文字幕一区| 亚洲欧洲色图综合| 美女视频一区在线观看| 国产精品女同互慰在线看 | 一区二区三区精品| 久久久久久电影| 欧美日韩久久久一区| 国产成人三级在线观看| 丝袜美腿一区二区三区| 国产精品毛片久久久久久| 欧美一区二区三区免费观看视频| 成人国产亚洲欧美成人综合网| 天堂精品中文字幕在线| 亚洲欧美在线高清| 久久久久久日产精品| 欧美一区二区高清| 色综合中文综合网| 亚洲h在线观看| 日本一二三不卡| 欧美岛国在线观看| 欧美日本视频在线| 91亚洲大成网污www| 国模大尺度一区二区三区| 亚洲国产精品久久久久婷婷884| 欧美国产日韩亚洲一区| 91麻豆精品91久久久久久清纯| 91色.com| av一区二区三区| 成人一区二区三区视频| 精品一区二区三区不卡| 青青草原综合久久大伊人精品优势| 亚洲精品写真福利| 日韩毛片在线免费观看| 国产精品人人做人人爽人人添| 精品欧美一区二区久久| 91精品国产美女浴室洗澡无遮挡| 91久久久免费一区二区| 97久久精品人人做人人爽50路| 国产剧情一区二区| 久久99热99| 美日韩一级片在线观看| 日韩 欧美一区二区三区| 午夜精品一区二区三区免费视频| 亚洲女与黑人做爰| 最好看的中文字幕久久| ●精品国产综合乱码久久久久|