?? tvqc_newton.m
字號(hào):
% tvqc_newton.m%% Newton algorithm for log-barrier subproblems for TV minimization% with quadratic constraints.%% Usage: % [xp,tp,niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, % newtontol, newtonmaxiter, cgtol, cgmaxiter)%% x0,t0 - starting points%% A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm% operates in "largescale" mode, solving the Newton systems via the% Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.% If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% epsilon - scalar, constraint relaxation parameter%% tau - Log barrier parameter.%% newtontol - Terminate when the Newton decrement is <= newtontol.%% newtonmaxiter - Maximum number of iterations.%% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.%% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored% if A is a matrix.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function [xp, tp, niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); alpha = 0.01;beta = 0.5; N = length(x0);n = round(sqrt(N));% create (sparse) differencing matrices for TVDv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N);Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N);if (~largescale), AtA = A'*A; end;% initial pointx = x0;t = t0;if (largescale), r = A(x) - b; else, r = A*x - b; end Dhx = Dh*x; Dvx = Dv*x;ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2);fe = 1/2*(r'*r - epsilon^2);f = sum(t) - (1/tau)*(sum(log(-ft)) + log(-fe));niter = 0;done = 0;while (~done) if (largescale), Atr = At(r); else, Atr = A'*r; end ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + 1/fe*Atr; ntgt = -tau - t./ft; gradf = -(1/tau)*[ntgx; ntgt]; sig22 = 1./ft + (t.^2)./(ft.^2); sig12 = -t./ft.^2; sigb = 1./ft.^2 - (sig12.^2)./sig22; w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt); if (largescale) h11pfun = @(z) H11p(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, Atr); [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Newton: Cannot solve system. Returning previous iterate.'); xp = x; tp = t; return end Adx = A(dx); else H11p = Dh'*diag(-1./ft + sigb.*Dhx.^2)*Dh + Dv'*diag(-1./ft + sigb.*Dvx.^2)*Dv + ... Dh'*diag(sigb.*Dhx.*Dvx)*Dv + Dv'*diag(sigb.*Dhx.*Dvx)*Dh - ... (1/fe)*AtA + (1/fe^2)*Atr*Atr'; [dx,hcond] = linsolve(H11p,w1p); if (hcond < 1e-14) disp('Newton: Matrix ill-conditioned. Returning previous iterate.'); xp = x; tp = t; return end Adx = A*dx; end Dhdx = Dh*dx; Dvdx = Dv*dx; dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx)); % minimum step size that stays in the interior s = 1; xp = x + s*dx; tp = t + s*dt; rp = r + s*Adx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; coneiter = 0; while ( (max(sqrt(Dhxp.^2+Dvxp.^2) - tp) > 0) | (rp'*rp > epsilon^2) ) s = beta*s; %1/2*(rp'*rp - epsilon^2) xp = x + s*dx; tp = t + s*dt; rp = r + s*Adx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; coneiter = coneiter + 1; if (coneiter > 32) disp('Stuck on cone iterations, returning previous iterate.'); xp = x; tp = t; return end end % backtracking line search ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); fep = 1/2*(rp'*rp - epsilon^2); fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + log(-fep)); flin = f + alpha*s*(gradf'*[dx; dt]); backiter = 0; while (fp > flin) s = beta*s; xp = x + s*dx; tp = t + s*dt; rp = r + s*Adx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); fep = 1/2*(rp'*rp - epsilon^2); fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + log(-fep)); flin = f + alpha*s*(gradf'*[dx; dt]); backiter = backiter + 1; if (backiter > 32) disp('Stuck on backtracking line search, returning previous iterate.'); xp = x; tp = t; return end end % set up for next iteration x = xp; t = tp; r = rp; Dvx = Dvxp; Dhx = Dhxp; ft = ftp; fe = fep; f = fp; lambda2 = -(gradf'*[dx; dt]); stepsize = s*norm([dx; dt]); niter = niter + 1; done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e, Cone iterations = %d, Backtrack iterations = %d', ... niter, f, lambda2/2, stepsize, coneiter, backiter)); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H11p auxiliary functionfunction y = H11p(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, atr)Dhv = Dh*v;Dvv = Dv*v;y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ... Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) - ... 1/fe*At(A(v)) + 1/fe^2*(atr'*v)*atr; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -