亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ex2.html

?? 非線性時間學列分析工具
?? HTML
字號:
<html><body bgcolor=white><head><center><table><tr><td align=center><b>Rainer Hegger</b></td>     <td width=20></td>     <td align=center><b>Holger Kantz</b></td>     <td width=20></td>     <td align=center><b>Thomas Schreiber</b></td></tr></table><title>Exercise 2 using TISEAN Nonlinear Time SeriesRoutines</title></head> <h1>Exercises using TISEAN<br><font color=blue>Part II: Linear models and simple prediction</font></h1></center><hr>Download the data set <a href="amplitude.dat"><b>amplitude.dat</b></a> toyour local directory for use in this exercise (Press the "Shift"-keyand the left mouse button).<br> <br><b> Visual analysis of data, time scales, and correlations</b><br><ul><li> Inspect the time series visually, e.g. by gnuplot (amount of data, obviousartefacts, typical time scales, qualitative behaviour on short times)<br><br><li> Compute the autocorrelation function (<ahref="../docs_c/corr.html">corr</a>)<br><br> <li> Which is a reasonable order for an AR-model?<br>Use <a href="../docs_c/ar-model.html">ar-model</a> to fit AR-modelsto the data.<br> Study the residuals, i.e. the differences between determinsitic partof the AR-model and the next observations. Inside gnuplot:<br><font color=green> plot [0:1000]'&#60; ar-model amplitude.dat -p10'u($0+10):1, '&#60; ar-model amplitude.dat -p50' u($0+50):1</font><br>Plot the data also in reversed order (since one curve partly hides theother), and together with <fontcolor=blue>amplitude.dat</font>.  Read the description of <ahref="../docs_c/ar-model.html">ar-model</a> to understand what yousee in the plot, and reduce and increasethe order of the model (controlled by the<font color=orange> -p</font> option) as far as your patience allowsyou to go (the computation time increases quadratically in<font color=orange> p</font>).<br><br><li> Result: the residuals have pronounced spikes at certain points of the timeseries even for very large order of the model. This demonstrates that the data do not stem from a linearstochastic process. Nonetheless, their magnitude compared to theamplitude of the signal is small. Hence, if one wants to use a linear model,<font color=orange> p=10</font> is a reasonable compromise betweenmodel complexity and performance.<br><br><li> Now use  <a href="../docs_c/ar-model.html">ar-model</a> to produce a new time series:<br> <font color=red> ar-model -s5000 amplitude.dat -p10 -o</font>,the output in <font color=blue>amplitude.dat.ar</font> is now, withthe <font color=orange> -s5000</font> option, the iterated model timeseries of length 5000.<br><br><li> Compare the two time series in the time domain. Also, compute the histograms using theroutine <a href="../docs_c/histogram.html">histogram</a>:<br><font color=red>mycomputer&#62; histogram amplitude.dat -b0 </font><br><font color=blue>Using amplitude.dat as datafile, reading column 1<br>Use 5000 lines.<br>Writing to stdout<br>#interval of data: [-1.463000e+01:1.727000e+01]<br>#average= 1.463300e-01<br>#standard deviation= 7.994755e+00<br></font>The ar-data have zero mean by construction. If you wish to superimposethe two histograms, you thus should shift the one with respect to theother by the mean value of the data:<br><font color=green>  set data style histep<br>plot '&#60; histogram amplitude.dat' u ($1-.146):2,'&#60; histogramar.dat' </font> <br>Result: The data sets are differnt: the distribution of <fontcolor=blue> ar.dat</font> is closer to a Gaussian (and converges to aGaussian for longer time series, try <font color=green> plot '&#60; ar-run -l100000amplitude.dat.ar | histogram' </font>).<br><br><li> Compute the auto-correlation functions and the powerspectra (by either <a href="../docs_c/mem_spec.html">mem_spec</a> or <a href="../docs_f/spectrum.html">spectrum</a>) of both of them:<br><font color=red> corr amplitude.dat -D500 -o<br>corr ar.dat -D500 -o</font><br><font color=green>set data style lines</font><br><font color=green> plot 'ar.dat.cor','amplitude.dat.cor'</font><br><font color=red>spectrum amplitude.dat -o<br>spectrum ar.dat -o</font><br><font color=green> set logscale y<br> plot 'amplitude.dat_sp','ar.dat_sp'</font><br>Result: The AR-data contain the same temporal correlations, but theydecay much faster than in <font color=blue> amplitude.dat</font>.<br>The spectra have to be compared with both linear and logarithmicy-scale. The frequency around 0.03 is dominant in both data sets, theharmonics of that visible in <font color=blue>amplitude.dat_sp</font>are suppressed in  <font color=blue>ar.dat_sp</font>. This reflectsthat the AR-model contains the relevant time scales, but has shortcomingsin a quantitative comparison. However, these are not too dramatic whenonly viewed with second order statistics. The differences will be moreevident in the higher order correlations and other nonlinear concepts.<br><br><li>Repeat the exercise starting from the ar-data you generated (filear.dat). You should observe that fitting an ar-model to ar-data willyield residuals with a gaussian distribution, and that the histograms, auto-correlationfunctions and power spectra of the model data are identical to thoseof the input data, if the order of the fit (<fontcolor=orange>  -p</font>) is not smaller than the order of the model bywhich the data were produced.<br><br></ul><b>Embedding and time lags</b><br><ul><li> Visualize both amplitude.dat and ar.dat in a delay embedding (donot forget to reset the gnuplot, e.g., <font color=green> set nologs</font>), using <a href="../docs_f/delay.html">delay </a>:<br>Start with <font color=orange>-d1</font> and increase it, at least upto 50. What is optimal by a) visual impression, and what should beoptimal when b) considering the auto-correlation function?<br><b> Answers:</b><br> <font color=blue> amplitude.dat</font>: a)About 8, when unfolding is good but overlap is still small. b) about 8: the first zero of the autocorrelation functionwould be optimal for a harmonic, periodic signal embedded in 2dimensions. <br><font color=blue>ar.dat</font>: a) for delay 8, the shape of the blob of lines comes close tocircular, hence indicating sufficient decorrelation of the componentsof the delay vectors. b) The auto-correlation function yields aboutthe same as for <font color=blue> amplitude.dat</font>.</ul><br><b>Determinism and predictability</b><br><ul><li> compute the false nearest neighbour statistics (<a href="../docs_c/false_nearest.html">false_nearest</a>):<br><font color=red> false_nearest  amplitude.dat -M8 -d8 -o-t200 -f5 </font><br>Study the output, <font color=blue>amplitude.dat.fnn</font>, andobserve the invariance of the result (namely that the embedding dimension3 is insufficient but 4 is o.k.) under change of the time lag. <br><br><li> Use the zeorth-order predictor (<a href="../docs_c/zeroth.html">zeroth</a>)on amplitude.dat and on ar.dat.<br><font color=red> zeroth amplitude.dat -m1,4 -d8 -o-s250<br>zeroth ar.dat -m1,4 -d8 -o-s250</font><br><font color=green>plot[][0:1.5] 'amplitude.dat.zer','ar.dat.zer',.05*exp(.02*x) </font></ul><br>You should be able to verify the following observations:<br>For increasing prediction horizion, the prediction errors of amplitude.datshow two regimes: Exponential increase of the error due to chaos(the regime of nonlinear deterministic dynamics), slow linearincrease due to loss of phase locking (the regime of linearcorrelations due to the rather constant period of the oscillations), constantwhen the predictions lose all correlations to the actualvalues (limit of unpredictability for a large prediction horizon of moretime steps than can be computed with this data set, the relative prediction error saturates at 1. In order toarrive a prediction horizons larger than one half of the data set,you must switch off the causality window by the <fontcolor=orange>-C0</font> option in <a href="../docs_c/zeroth.html">zeroth</a>). <br> <br>No succesful prediction for ar.dat beyond the linear correlations.Since ar.dat is a linear stochastic data set,it does not contain phase space information.<br><br><br></body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩不卡一区二区| 亚洲伦在线观看| 久久久久久电影| 中文字幕一区在线| 午夜精品久久久| 国产999精品久久久久久绿帽| 激情亚洲综合在线| 成人的网站免费观看| 国产91丝袜在线18| 欧美日韩三级在线| 久久国产精品99久久人人澡| 成人h动漫精品| 国产午夜精品一区二区三区视频| 奇米精品一区二区三区在线观看| 欧美中文字幕久久 | 成人午夜私人影院| 欧美大片免费久久精品三p| 夜夜嗨av一区二区三区四季av| 成人综合在线视频| 日本一区二区三区dvd视频在线| 九九在线精品视频| 91精品国产综合久久婷婷香蕉| 亚洲影院理伦片| 色欧美片视频在线观看| 亚洲视频免费在线| 91免费视频大全| 亚洲少妇最新在线视频| 99re热这里只有精品免费视频| 国产欧美精品一区二区色综合朱莉| 久久99热这里只有精品| 日韩亚洲欧美综合| 麻豆传媒一区二区三区| 欧美大肚乱孕交hd孕妇| 久久国产尿小便嘘嘘| 欧美成人一级视频| 国产一区二区在线看| 久久久久久久久久久电影| 国产一区二区三区免费在线观看| 精品剧情在线观看| 国产高清不卡一区| 国产精品人妖ts系列视频| 9人人澡人人爽人人精品| 国产精品视频yy9299一区| 99久久婷婷国产精品综合| 亚洲欧洲中文日韩久久av乱码| 日本高清不卡aⅴ免费网站| 亚洲综合在线视频| 欧美日韩在线精品一区二区三区激情| 亚洲国产精品一区二区尤物区| 欧美中文字幕一二三区视频| 日韩黄色免费电影| 精品成人一区二区三区| 丁香天五香天堂综合| 亚洲欧美日韩国产成人精品影院| 欧美日韩一区二区三区不卡| 美女视频网站久久| 国产区在线观看成人精品| 91麻豆国产在线观看| 丝瓜av网站精品一区二区| 久久综合丝袜日本网| 91香蕉视频mp4| 蜜臀av性久久久久蜜臀aⅴ四虎 | 国产成人免费视频网站 | 欧美无乱码久久久免费午夜一区 | 午夜精品久久久久久久久| 久久久国产综合精品女国产盗摄| 99久久精品免费看国产| 日韩国产成人精品| 日本一区二区三区视频视频| 欧美亚洲综合一区| 国产精品一区二区三区99| 亚洲欧美日韩中文字幕一区二区三区 | 一本大道久久a久久精品综合| 亚洲视频一区在线观看| 日韩一区二区三区在线视频| av在线不卡观看免费观看| 日本不卡一二三| 亚洲欧美aⅴ...| 精品国产凹凸成av人网站| 欧美在线视频全部完| 国产精品一线二线三线精华| 亚洲第一主播视频| 欧美激情一区二区三区蜜桃视频 | 91在线高清观看| 国产一区二区三区日韩| 亚洲图片一区二区| 国产精品久久久久天堂| 日韩欧美一二三| 欧美视频日韩视频在线观看| 粉嫩高潮美女一区二区三区| 美女视频黄免费的久久 | 1000部国产精品成人观看| 欧美精品一区二区蜜臀亚洲| 欧美老女人第四色| 91香蕉视频mp4| 成人av在线资源| 国产麻豆日韩欧美久久| 蜜桃av一区二区在线观看| 亚洲免费色视频| |精品福利一区二区三区| 国产色产综合色产在线视频| 日韩一区二区高清| 欧美日韩精品电影| 欧美性猛交一区二区三区精品| 99视频超级精品| 国产精品系列在线观看| 韩国理伦片一区二区三区在线播放| 婷婷国产在线综合| 亚洲444eee在线观看| 亚洲午夜久久久久久久久电影院| 亚洲视频一区二区在线观看| 欧美高清在线一区二区| 国产亚洲福利社区一区| 久久久亚洲高清| 久久九九久久九九| 欧美高清在线精品一区| 国产精品乱码人人做人人爱| 欧美—级在线免费片| 国产精品理伦片| 亚洲三级久久久| 亚洲一区二区成人在线观看| 亚洲高清在线视频| 日韩二区三区四区| 久久97超碰国产精品超碰| 精品一区二区三区久久久| 国产一区二区三区黄视频| 国产成人综合在线观看| 99久久伊人精品| 欧美性大战久久久久久久蜜臀| 欧美日韩和欧美的一区二区| 日韩欧美视频一区| 欧美精品一区二区三区蜜桃| 亚洲国产精品av| 亚洲精品视频一区二区| 午夜精品成人在线| 久久se精品一区二区| 高清成人免费视频| 91久久精品一区二区二区| 欧美伦理电影网| 国产亚洲福利社区一区| 亚洲精选在线视频| 麻豆精品在线视频| 成人99免费视频| 欧美日韩国产另类一区| 久久久影院官网| 亚洲精品视频在线观看网站| 日本欧美加勒比视频| 粉嫩av一区二区三区在线播放| 在线精品视频免费观看| 精品久久国产字幕高潮| 亚洲欧美日韩人成在线播放| 天天综合日日夜夜精品| 国产成人av电影在线观看| 色婷婷综合久久久久中文| 欧美α欧美αv大片| 成人欧美一区二区三区在线播放| 亚洲福利电影网| 波多野结衣中文一区| 欧美日韩小视频| 国产精品国产成人国产三级| 美女视频黄免费的久久| 99国内精品久久| 精品对白一区国产伦| 午夜精品福利久久久| 99v久久综合狠狠综合久久| 久久人人97超碰com| 午夜不卡av免费| 91尤物视频在线观看| 久久久亚洲精品石原莉奈 | 看国产成人h片视频| 91成人在线免费观看| 国产欧美久久久精品影院| 美国毛片一区二区三区| 在线影院国内精品| 国产精品乱人伦| 国产一区二区女| 欧美一激情一区二区三区| 亚洲高清免费一级二级三级| caoporn国产一区二区| 精品国产91乱码一区二区三区 | 欧美日韩和欧美的一区二区| 亚洲欧美在线另类| 国产精品香蕉一区二区三区| 欧美电视剧免费观看| 免费观看在线色综合| 7777精品久久久大香线蕉| 亚洲国产视频一区| 在线观看视频一区二区| 亚洲精品国产精华液| 91麻豆国产福利在线观看| 国产精品福利影院| 99精品黄色片免费大全| 国产精品理论在线观看| 成人激情小说乱人伦| 国产精品久久久久7777按摩 | 欧美日韩国产高清一区二区三区| 亚洲综合区在线| 在线精品视频免费观看| 亚洲最大成人综合| 欧美日韩激情一区|