?? haarcascade_frontalface_alt.xml
字號(hào):
<left_val>0.2695507109165192</left_val>
<right_val>0.5738824009895325</right_val></_></_>
<_>
<!-- tree 6 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>9 12 1 8 -1.</_>
<_>9 16 1 4 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>-5.0214841030538082e-003</threshold>
<left_val>0.1893538981676102</left_val>
<right_val>0.5782774090766907</right_val></_></_>
<_>
<!-- tree 7 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>0 7 20 6 -1.</_>
<_>0 9 20 2 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>2.6365420781075954e-003</threshold>
<left_val>0.2309329062700272</left_val>
<right_val>0.5695425868034363</right_val></_></_>
<_>
<!-- tree 8 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>7 0 6 17 -1.</_>
<_>9 0 2 17 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>-1.5127769438549876e-003</threshold>
<left_val>0.2759602069854736</left_val>
<right_val>0.5956642031669617</right_val></_></_>
<_>
<!-- tree 9 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>9 0 6 4 -1.</_>
<_>11 0 2 4 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>-0.0101574398577213</threshold>
<left_val>0.1732538044452667</left_val>
<right_val>0.5522047281265259</right_val></_></_>
<_>
<!-- tree 10 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>5 1 6 4 -1.</_>
<_>7 1 2 4 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>-0.0119536602869630</threshold>
<left_val>0.1339409947395325</left_val>
<right_val>0.5559014081954956</right_val></_></_>
<_>
<!-- tree 11 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>12 1 6 16 -1.</_>
<_>14 1 2 16 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>4.8859491944313049e-003</threshold>
<left_val>0.3628703951835632</left_val>
<right_val>0.6188849210739136</right_val></_></_>
<_>
<!-- tree 12 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>0 5 18 8 -1.</_>
<_>0 5 9 4 2.</_>
<_>9 9 9 4 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>-0.0801329165697098</threshold>
<left_val>0.0912110507488251</left_val>
<right_val>0.5475944876670837</right_val></_></_>
<_>
<!-- tree 13 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>8 15 10 4 -1.</_>
<_>13 15 5 2 2.</_>
<_>8 17 5 2 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>1.0643280111253262e-003</threshold>
<left_val>0.3715142905712128</left_val>
<right_val>0.5711399912834168</right_val></_></_>
<_>
<!-- tree 14 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>3 1 4 8 -1.</_>
<_>3 1 2 4 2.</_>
<_>5 5 2 4 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>-1.3419450260698795e-003</threshold>
<left_val>0.5953313708305359</left_val>
<right_val>0.3318097889423370</right_val></_></_>
<_>
<!-- tree 15 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>3 6 14 10 -1.</_>
<_>10 6 7 5 2.</_>
<_>3 11 7 5 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>-0.0546011403203011</threshold>
<left_val>0.1844065934419632</left_val>
<right_val>0.5602846145629883</right_val></_></_>
<_>
<!-- tree 16 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>2 1 6 16 -1.</_>
<_>4 1 2 16 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>2.9071690514683723e-003</threshold>
<left_val>0.3594244122505188</left_val>
<right_val>0.6131715178489685</right_val></_></_>
<_>
<!-- tree 17 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>0 18 20 2 -1.</_>
<_>0 19 20 1 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>7.4718717951327562e-004</threshold>
<left_val>0.5994353294372559</left_val>
<right_val>0.3459562957286835</right_val></_></_>
<_>
<!-- tree 18 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>8 13 4 3 -1.</_>
<_>8 14 4 1 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>4.3013808317482471e-003</threshold>
<left_val>0.4172652065753937</left_val>
<right_val>0.6990845203399658</right_val></_></_>
<_>
<!-- tree 19 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>9 14 2 3 -1.</_>
<_>9 15 2 1 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>4.5017572119832039e-003</threshold>
<left_val>0.4509715139865875</left_val>
<right_val>0.7801457047462463</right_val></_></_>
<_>
<!-- tree 20 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>0 12 9 6 -1.</_>
<_>0 14 9 2 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>0.0241385009139776</threshold>
<left_val>0.5438212752342224</left_val>
<right_val>0.1319826990365982</right_val></_></_></trees>
<stage_threshold>9.4985427856445313</stage_threshold>
<parent>1</parent>
<next>-1</next></_>
<_>
<!-- stage 3 -->
<trees>
<_>
<!-- tree 0 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>5 7 3 4 -1.</_>
<_>5 9 3 2 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>1.9212230108678341e-003</threshold>
<left_val>0.1415266990661621</left_val>
<right_val>0.6199870705604553</right_val></_></_>
<_>
<!-- tree 1 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>9 3 2 16 -1.</_>
<_>9 11 2 8 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>-1.2748669541906565e-004</threshold>
<left_val>0.6191074252128601</left_val>
<right_val>0.1884928941726685</right_val></_></_>
<_>
<!-- tree 2 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>3 6 13 8 -1.</_>
<_>3 10 13 4 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>5.1409931620582938e-004</threshold>
<left_val>0.1487396955490112</left_val>
<right_val>0.5857927799224854</right_val></_></_>
<_>
<!-- tree 3 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>12 3 8 2 -1.</_>
<_>12 3 4 2 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>4.1878609918057919e-003</threshold>
<left_val>0.2746909856796265</left_val>
<right_val>0.6359239816665649</right_val></_></_>
<_>
<!-- tree 4 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>8 8 4 12 -1.</_>
<_>8 12 4 4 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>5.1015717908740044e-003</threshold>
<left_val>0.5870851278305054</left_val>
<right_val>0.2175628989934921</right_val></_></_>
<_>
<!-- tree 5 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>11 3 8 6 -1.</_>
<_>15 3 4 3 2.</_>
<_>11 6 4 3 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>-2.1448440384119749e-003</threshold>
<left_val>0.5880944728851318</left_val>
<right_val>0.2979590892791748</right_val></_></_>
<_>
<!-- tree 6 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>7 1 6 19 -1.</_>
<_>9 1 2 19 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>-2.8977119363844395e-003</threshold>
<left_val>0.2373327016830444</left_val>
<right_val>0.5876647233963013</right_val></_></_>
<_>
<!-- tree 7 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>9 0 6 4 -1.</_>
<_>11 0 2 4 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>-0.0216106791049242</threshold>
<left_val>0.1220654994249344</left_val>
<right_val>0.5194202065467835</right_val></_></_>
<_>
<!-- tree 8 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>3 1 9 3 -1.</_>
<_>6 1 3 3 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>-4.6299318782985210e-003</threshold>
<left_val>0.2631230950355530</left_val>
<right_val>0.5817409157752991</right_val></_></_>
<_>
<!-- tree 9 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>8 15 10 4 -1.</_>
<_>13 15 5 2 2.</_>
<_>8 17 5 2 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>5.9393711853772402e-004</threshold>
<left_val>0.3638620078563690</left_val>
<right_val>0.5698544979095459</right_val></_></_>
<_>
<!-- tree 10 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>0 3 6 10 -1.</_>
<_>3 3 3 10 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>0.0538786612451077</threshold>
<left_val>0.4303531050682068</left_val>
<right_val>0.7559366226196289</right_val></_></_>
<_>
<!-- tree 11 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>3 4 15 15 -1.</_>
<_>3 9 15 5 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>1.8887349870055914e-003</threshold>
<left_val>0.2122603058815002</left_val>
<right_val>0.5613427162170410</right_val></_></_>
<_>
<!-- tree 12 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>6 5 8 6 -1.</_>
<_>6 7 8 2 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>-2.3635339457541704e-003</threshold>
<left_val>0.5631849169731140</left_val>
<right_val>0.2642767131328583</right_val></_></_>
<_>
<!-- tree 13 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>4 4 12 10 -1.</_>
<_>10 4 6 5 2.</_>
<_>4 9 6 5 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>0.0240177996456623</threshold>
<left_val>0.5797107815742493</left_val>
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -