?? isa_desc
字號:
ss << (int)imm; if (_numDestRegs > 0) { ss << ","; printReg(ss, _destRegIdx[0]); } return ss.str(); }}};def template RegOrImmDecode {{ { AlphaStaticInst *i = (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst) : (AlphaStaticInst *)new %(class_name)s(machInst); if (RC == 31) { i = makeNop(i); } return i; }}};// Primary format for integer operate instructions:// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used.// - Generates NOP if RC == 31.def format IntegerOperate(code, *opt_flags) {{ # If the code block contains 'Rb_or_imm', we define two instructions, # one using 'Rb' and one using 'imm', and have the decoder select # the right one. uses_imm = (code.find('Rb_or_imm') != -1) if uses_imm: orig_code = code # base code is reg version: # rewrite by substituting 'Rb' for 'Rb_or_imm' code = re.sub(r'Rb_or_imm', 'Rb', orig_code) # generate immediate version by substituting 'imm' # note that imm takes no extenstion, so we extend # the regexp to replace any extension as well imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code) # generate declaration for register version cblk = CodeBlock(code) iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) exec_output = BasicExecute.subst(iop) if uses_imm: # append declaration for imm version imm_cblk = CodeBlock(imm_code) imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk, opt_flags) header_output += BasicDeclare.subst(imm_iop) decoder_output += BasicConstructor.subst(imm_iop) exec_output += BasicExecute.subst(imm_iop) # decode checks IMM bit to pick correct version decode_block = RegOrImmDecode.subst(iop) else: # no imm version: just check for nop decode_block = OperateNopCheckDecode.subst(iop)}};//////////////////////////////////////////////////////////////////////// Floating-point instructions//// Note that many FP-type instructions which do not support all the// various rounding & trapping modes use the simpler format// BasicOperateWithNopCheck.//output exec {{ /// Check "FP enabled" machine status bit. Called when executing any FP /// instruction in full-system mode. /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault /// if not. Non-full-system mode: always returns No_Fault.#if FULL_SYSTEM inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) { Fault fault = No_Fault; // dummy... this ipr access should not fault if (!EV5::ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) { fault = Fen_Fault; } return fault; }#else inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc) { return No_Fault; }#endif}};output header {{ /** * Base class for general floating-point instructions. Includes * support for various Alpha rounding and trapping modes. Only FP * instructions that require this support are derived from this * class; the rest derive directly from AlphaStaticInst. */ class AlphaFP : public AlphaStaticInst { public: /// Alpha FP rounding modes. enum RoundingMode { Chopped = 0, ///< round toward zero Minus_Infinity = 1, ///< round toward minus infinity Normal = 2, ///< round to nearest (default) Dynamic = 3, ///< use FPCR setting (in instruction) Plus_Infinity = 3 ///< round to plus inifinity (in FPCR) }; /// Alpha FP trapping modes. /// For instructions that produce integer results, the /// "Underflow Enable" modes really mean "Overflow Enable", and /// the assembly modifier is V rather than U. enum TrappingMode { /// default: nothing enabled Imprecise = 0, ///< no modifier /// underflow/overflow traps enabled, inexact disabled Underflow_Imprecise = 1, ///< /U or /V Underflow_Precise = 5, ///< /SU or /SV /// underflow/overflow and inexact traps enabled Underflow_Inexact_Precise = 7 ///< /SUI or /SVI }; protected: /// Map Alpha rounding mode to C99 constants from <fenv.h>. static const int alphaToC99RoundingMode[]; /// Map enum RoundingMode values to disassembly suffixes. static const char *roundingModeSuffix[]; /// Map enum TrappingMode values to FP disassembly suffixes. static const char *fpTrappingModeSuffix[]; /// Map enum TrappingMode values to integer disassembly suffixes. static const char *intTrappingModeSuffix[]; /// This instruction's rounding mode. RoundingMode roundingMode; /// This instruction's trapping mode. TrappingMode trappingMode; /// Have we warned about this instruction's unsupported /// rounding mode (if applicable)? mutable bool warnedOnRounding; /// Have we warned about this instruction's unsupported /// trapping mode (if applicable)? mutable bool warnedOnTrapping; /// Constructor AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass) : AlphaStaticInst(mnem, _machInst, __opClass), roundingMode((enum RoundingMode)FP_ROUNDMODE), trappingMode((enum TrappingMode)FP_TRAPMODE), warnedOnRounding(false), warnedOnTrapping(false) { } int getC99RoundingMode(uint64_t fpcr_val) const; // This differs from the AlphaStaticInst version only in // printing suffixes for non-default rounding & trapping modes. std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; };}};output decoder {{ int AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const { if (roundingMode == Dynamic) { return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)]; } else { return alphaToC99RoundingMode[roundingMode]; } } std::string AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::string mnem_str(mnemonic);#ifndef SS_COMPATIBLE_DISASSEMBLY std::string suffix(""); suffix += ((_destRegIdx[0] >= FP_Base_DepTag) ? fpTrappingModeSuffix[trappingMode] : intTrappingModeSuffix[trappingMode]); suffix += roundingModeSuffix[roundingMode]; if (suffix != "") { mnem_str = csprintf("%s/%s", mnemonic, suffix); }#endif std::stringstream ss; ccprintf(ss, "%-10s ", mnem_str.c_str()); // just print the first two source regs... if there's // a third one, it's a read-modify-write dest (Rc), // e.g. for CMOVxx if (_numSrcRegs > 0) { printReg(ss, _srcRegIdx[0]); } if (_numSrcRegs > 1) { ss << ","; printReg(ss, _srcRegIdx[1]); } // just print the first dest... if there's a second one, // it's generally implicit if (_numDestRegs > 0) { if (_numSrcRegs > 0) ss << ","; printReg(ss, _destRegIdx[0]); } return ss.str(); } const int AlphaFP::alphaToC99RoundingMode[] = { FE_TOWARDZERO, // Chopped FE_DOWNWARD, // Minus_Infinity FE_TONEAREST, // Normal FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR }; const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" }; // mark invalid trapping modes, but don't fail on them, because // you could decode anything on a misspeculated path const char *AlphaFP::fpTrappingModeSuffix[] = { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" }; const char *AlphaFP::intTrappingModeSuffix[] = { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };}};// FP instruction class execute method template. Handles non-standard// rounding modes.def template FloatingPointExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { if (trappingMode != Imprecise) { warn("%s: non-standard trapping mode not supported", generateDisassembly(0, NULL)); warnedOnTrapping = true; } Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s;#if USE_FENV if (roundingMode == Normal) { %(code)s; } else { fesetround(getC99RoundingMode(xc->readFpcr())); %(code)s; fesetround(FE_TONEAREST); }#else if (roundingMode != Normal && !warnedOnRounding) { warn("%s: non-standard rounding mode not supported", generateDisassembly(0, NULL)); warnedOnRounding = true; } %(code)s;#endif if (fault == No_Fault) { %(op_wb)s; } return fault; }}};// FP instruction class execute method template where no dynamic// rounding mode control is needed. Like BasicExecute, but includes// check & warning for non-standard trapping mode.def template FPFixedRoundingExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { if (trappingMode != Imprecise) { warn("%s: non-standard trapping mode not supported", generateDisassembly(0, NULL)); warnedOnTrapping = true; } Fault fault = No_Fault; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(code)s; if (fault == No_Fault) { %(op_wb)s; } return fault; }}};def template FloatingPointDecode {{ { AlphaStaticInst *i = new %(class_name)s(machInst); if (FC == 31) { i = makeNop(i); } return i; }}};// General format for floating-point operate instructions:// - Checks trapping and rounding mode flags. Trapping modes// currently unimplemented (will fail).// - Generates NOP if FC == 31.def format FloatingPointOperate(code, *opt_args) {{ iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) decode_block = FloatingPointDecode.subst(iop) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) exec_output = FloatingPointExecute.subst(iop)}};// Special format for cvttq where rounding mode is pre-decodeddef format FPFixedRounding(code, class_suffix, *opt_args) {{ Name += class_suffix iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) decode_block = FloatingPointDecode.subst(iop) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) exec_output = FPFixedRoundingExecute.subst(iop)}};//////////////////////////////////////////////////////////////////////// Memory-format instructions: LoadAddress, Load, Store//output header {{ /** * Base class for general Alpha memory-format instructions. */ class Memory : public AlphaStaticInst { protected: /// Memory request flags. See mem_req_base.hh. unsigned memAccessFlags; /// Pointer to EAComp object. const StaticInstPtr<AlphaISA> eaCompPtr; /// Pointer to MemAcc object. const StaticInstPtr<AlphaISA> memAccPtr; /// Constructor Memory(const char *mnem, MachInst _machInst, OpClass __opClass, StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) : AlphaStaticInst(mnem, _machInst, __opClass), memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; public: const StaticInstPtr<AlphaISA> &eaCompInst() const { return eaCompPtr; } const StaticInstPtr<AlphaISA> &memAccInst() const { return memAccPtr; } }; /** * Base class for memory-format instructions using a 32-bit * displacement (i.e. most of them). */ class MemoryDisp32 : public Memory { protected: /// Displacement for EA calculation (signed). int32_t disp; /// Constructor. MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass, StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr), disp(MEMDISP) { } }; /** * Base class for a few miscellaneous memory-format insts * that don't interpret the disp field: wh64, fetch, fetch_m, ecb. * None of these instructions has a destination register either. */ class MemoryNoDisp : public Memory { protected: /// Constructor MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass, StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr, StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr) : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; };}};output decoder {{ std::string Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const { return csprintf("%-10s %c%d,%d(r%d)", mnemonic, flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB); } std::string MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { return csprintf("%-10s (r%d)", mnemonic, RB); }}};def format LoadAddress(code) {{ iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code)) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = BasicExecute.subst(iop)}};def template LoadStoreDeclare {{ /** * Static instruction class for "%(mnemonic)s". */ class %(class_name)s : public %(base_class)s { protected: /** * "Fake" effective address computation class for "%(mnemonic)s". */ class EAComp : public %(base_class)s {
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -