?? gt.res
字號:
+ 0.424x 8
+ 0.273x10
DEPARTURE SQUARE SUM =46508.2422
REGRESSION SQUARE SUM=37124.4961
RESIDUES SQUARE SUM= 9383.7471
MULTIPLE CORRELATION COEFFICIENT= 0.8934
MEAN--Y= -12.38 RMSE= 8.56
FITTING
-45.46 -47.97 -39.48 -36.85 -31.24 -35.47 -35.85 -25.49 -25.34 -31.29
-39.02 -31.54 -30.78 -38.82 -43.30 -35.77 -22.13 -15.25 -31.06 -41.33
-39.36 -36.62 -34.82 -33.61 -33.20 -27.48 -39.16 -33.00 -22.45 -31.26
-37.18 -40.34 -33.12 -26.32 -21.15 -11.40 -13.72 -23.61 -16.08 -13.29
-16.41 -21.15 -18.39 -26.45 -22.67 -17.37 -13.90 -19.40 -13.63 -15.72
-17.30 -22.93 -22.60 -15.74 -1.72 -20.75 -30.04 -24.74 -17.50 -12.73
-14.41 -20.68 -16.87 -18.13 -11.98 -4.74 -11.79 -9.44 -14.85 -7.94
-0.07 -6.51 -12.59 -14.11 -10.70 -9.30 -0.91 -2.33 -2.19 -2.89
-2.82 -2.03 -1.31 -0.59 -8.37 -6.40 -5.86 -8.87 -5.90 -2.21
3.19 12.60 1.59 -7.79 -8.46 -3.60 9.61 5.33 0.99 0.33
10.08 14.28 13.85 -1.17 1.04 -1.42 -0.12 8.07 8.22 10.66
5.18 7.93 15.35 5.24 2.16 2.81 4.96 1.87 10.32 14.56
19.54 11.56 18.07 15.10 9.40 13.37 16.64 22.24
FORECAST
31.47 18.69 10.07
6ORDER REGRESSION SET
X 1
X 6
X 7
X 8
X 9
X10
REGRESSION EQUATION
Y= -4.439
+ 0.396x 1
+ -0.393x 6
+ 0.285x 7
+ 0.418x 8
+ 0.103x 9
+ 0.273x10
DEPARTURE SQUARE SUM =46508.2422
REGRESSION SQUARE SUM=37158.5938
RESIDUES SQUARE SUM= 9349.6494
MULTIPLE CORRELATION COEFFICIENT= 0.8939
MEAN--Y= -12.38 RMSE= 8.55
FITTING
-45.55 -47.97 -39.95 -37.10 -30.75 -35.96 -36.09 -25.68 -25.40 -31.28
-38.28 -31.49 -31.01 -39.11 -43.36 -36.17 -22.26 -14.66 -30.88 -40.80
-38.92 -37.23 -35.46 -34.04 -32.90 -27.31 -38.56 -33.50 -22.99 -30.66
-36.58 -40.83 -33.22 -27.16 -21.50 -11.31 -13.17 -22.89 -16.08 -13.21
-15.60 -21.45 -18.90 -26.31 -23.26 -16.75 -13.58 -19.38 -13.85 -15.34
-17.25 -22.65 -22.56 -15.65 -2.66 -20.98 -29.86 -23.73 -16.82 -13.21
-14.21 -20.07 -17.06 -18.61 -12.26 -4.70 -12.25 -9.96 -14.46 -8.20
-1.04 -5.92 -13.11 -14.71 -11.69 -9.09 -0.01 -1.95 -2.62 -2.12
-2.50 -1.14 -1.29 -1.76 -8.75 -6.12 -4.87 -8.49 -5.73 -1.99
3.30 12.28 1.43 -7.66 -7.87 -3.76 8.94 4.28 1.43 1.66
9.61 13.99 13.83 -1.25 0.40 -1.88 0.09 8.50 8.00 9.75
5.71 7.97 15.02 4.43 1.46 2.26 4.74 2.61 11.43 14.27
20.15 12.55 18.20 14.73 9.32 13.32 16.39 23.16
FORECAST
31.26 18.20 10.11
7ORDER REGRESSION SET
X 1
X 3
X 5
X 6
X 7
X 8
X10
REGRESSION EQUATION
Y= -3.552
+ 0.405x 1
+ -0.089x 3
+ 0.113x 5
+ -0.378x 6
+ 0.316x 7
+ 0.441x 8
+ 0.286x10
DEPARTURE SQUARE SUM =46508.2422
REGRESSION SQUARE SUM=37182.1719
RESIDUES SQUARE SUM= 9326.0684
MULTIPLE CORRELATION COEFFICIENT= 0.8941
MEAN--Y= -12.38 RMSE= 8.54
FITTING
-45.17 -47.99 -39.20 -37.56 -31.98 -35.61 -35.64 -24.48 -25.24 -31.41
-38.84 -30.91 -30.71 -38.68 -43.23 -36.27 -21.91 -14.35 -31.54 -41.80
-38.85 -36.05 -34.39 -34.03 -34.34 -27.13 -39.22 -33.36 -23.37 -31.74
-37.95 -40.10 -32.31 -26.81 -22.13 -12.28 -13.23 -23.13 -15.94 -12.52
-16.44 -22.14 -17.77 -26.10 -22.97 -16.89 -12.99 -19.45 -13.50 -15.48
-17.65 -21.88 -21.78 -16.51 -2.19 -22.29 -29.83 -22.96 -17.61 -12.23
-14.00 -20.76 -16.53 -19.28 -13.18 -4.25 -12.67 -9.41 -13.17 -8.07
-0.79 -6.72 -13.24 -14.57 -11.49 -10.14 -0.99 -3.21 -1.96 -1.01
-2.62 -2.51 -0.25 -1.42 -8.70 -5.06 -5.44 -8.39 -5.60 -2.99
2.27 13.29 2.18 -7.68 -8.16 -3.64 9.72 6.45 1.59 0.81
9.95 13.82 13.77 -1.84 1.41 -0.91 -0.81 7.55 7.66 10.45
5.03 7.17 13.35 3.97 1.44 3.14 5.43 1.68 11.16 15.02
20.16 12.03 18.53 15.09 9.75 13.23 16.48 22.89
FORECAST
32.59 19.02 9.81
8ORDER REGRESSION SET
X 1
X 3
X 5
X 6
X 7
X 8
X 9
X10
REGRESSION EQUATION
Y= -3.785
+ 0.388x 1
+ -0.091x 3
+ 0.081x 5
+ -0.391x 6
+ 0.301x 7
+ 0.442x 8
+ 0.079x 9
+ 0.288x10
DEPARTURE SQUARE SUM =46508.2422
REGRESSION SQUARE SUM=37198.0000
RESIDUES SQUARE SUM= 9310.2402
MULTIPLE CORRELATION COEFFICIENT= 0.8943
MEAN--Y= -12.38 RMSE= 8.53
FITTING
-45.46 -47.98 -39.55 -37.64 -31.68 -35.86 -35.77 -24.63 -25.31 -31.27
-38.26 -31.09 -30.95 -38.82 -43.23 -36.25 -21.85 -14.08 -31.43 -41.41
-38.72 -36.57 -34.91 -34.01 -33.93 -27.24 -38.81 -33.63 -23.59 -31.52
-37.48 -40.52 -32.48 -27.33 -22.04 -11.90 -12.95 -22.76 -15.78 -12.54
-16.07 -22.16 -18.26 -25.98 -23.32 -16.43 -12.85 -19.56 -13.73 -15.09
-17.49 -21.83 -22.02 -16.24 -2.63 -22.14 -30.02 -22.72 -16.95 -12.39
-13.99 -20.44 -16.78 -19.33 -13.29 -4.34 -12.90 -9.57 -13.21 -8.14
-1.24 -6.34 -13.71 -14.82 -12.11 -9.87 -0.71 -2.70 -2.21 -0.68
-2.50 -1.71 -0.35 -1.94 -9.06 -5.12 -4.82 -8.21 -5.69 -2.82
2.62 13.04 1.98 -7.55 -7.73 -3.55 9.19 5.41 1.94 1.80
9.49 13.65 13.86 -1.69 1.09 -1.50 -0.55 7.74 7.52 9.93
5.32 7.18 13.36 3.49 1.05 2.62 5.07 2.24 11.90 14.67
20.40 12.81 18.83 15.02 9.40 12.97 16.23 23.48
FORECAST
32.41 18.85 9.93
9ORDER REGRESSION SET
X 1
X 3
X 4
X 5
X 6
X 7
X 8
X 9
X10
REGRESSION EQUATION
Y= -3.807
+ 0.395x 1
+ -0.086x 3
+ -0.041x 4
+ 0.084x 5
+ -0.387x 6
+ 0.304x 7
+ 0.446x 8
+ 0.078x 9
+ 0.303x10
DEPARTURE SQUARE SUM =46508.2422
REGRESSION SQUARE SUM=37203.5000
RESIDUES SQUARE SUM= 9304.7402
MULTIPLE CORRELATION COEFFICIENT= 0.8944
MEAN--Y= -12.38 RMSE= 8.53
FITTING
-45.46 -47.62 -39.33 -37.21 -31.47 -35.54 -35.65 -24.78 -25.64 -31.17
-38.39 -30.97 -30.76 -38.98 -43.49 -36.27 -21.95 -14.40 -31.36 -41.21
-38.81 -36.75 -34.83 -34.06 -34.03 -27.23 -39.02 -33.92 -23.62 -31.17
-37.53 -40.32 -32.79 -27.24 -22.00 -11.98 -13.14 -22.87 -15.66 -12.31
-15.82 -22.06 -18.28 -26.12 -23.47 -16.88 -12.72 -19.31 -13.61 -15.21
-17.32 -21.62 -22.16 -16.31 -2.20 -22.28 -30.35 -22.40 -16.81 -12.04
-14.02 -20.47 -16.85 -19.73 -13.71 -4.22 -13.07 -9.60 -13.43 -8.13
-1.13 -6.37 -14.17 -15.48 -12.06 -9.61 -0.64 -2.61 -1.93 -0.41
-2.35 -1.89 -0.25 -1.66 -9.10 -4.82 -4.78 -7.88 -5.83 -2.73
2.61 12.98 1.67 -7.59 -7.89 -3.80 9.31 5.52 1.92 1.86
9.34 13.13 14.03 -1.60 0.93 -1.71 -0.43 7.86 7.54 9.83
5.17 7.11 13.67 3.91 0.98 2.77 5.06 2.21 11.81 14.47
20.17 12.78 18.94 15.07 9.26 12.99 16.30 23.68
FORECAST
32.37 18.31 9.86
10ORDER REGRESSION SET
X 1
X 2
X 3
X 4
X 5
X 6
X 7
X 8
X 9
X10
REGRESSION EQUATION
Y= -3.700
+ 0.399x 1
+ -0.019x 2
+ -0.086x 3
+ -0.037x 4
+ 0.087x 5
+ -0.381x 6
+ 0.303x 7
+ 0.451x 8
+ 0.074x 9
+ 0.306x10
DEPARTURE SQUARE SUM =46508.2422
REGRESSION SQUARE SUM=37204.5547
RESIDUES SQUARE SUM= 9303.6865
MULTIPLE CORRELATION COEFFICIENT= 0.8944
MEAN--Y= -12.38 RMSE= 8.53
FITTING
-45.44 -47.66 -39.36 -37.23 -31.56 -35.48 -35.67 -24.84 -25.64 -31.01
-38.30 -30.87 -30.65 -38.91 -43.47 -36.40 -22.15 -14.35 -31.15 -41.12
-38.94 -36.84 -34.85 -34.02 -34.07 -27.24 -39.13 -33.92 -23.53 -31.32
-37.48 -40.33 -32.89 -27.27 -21.81 -12.01 -13.19 -22.82 -15.59 -12.18
-15.91 -21.94 -18.29 -26.21 -23.40 -16.89 -12.82 -19.24 -13.41 -15.16
-17.38 -21.57 -22.13 -16.34 -2.36 -22.43 -30.25 -22.36 -16.93 -12.12
-14.03 -20.44 -16.86 -19.75 -13.70 -4.15 -13.14 -9.52 -13.42 -8.04
-1.09 -6.46 -14.04 -15.52 -12.22 -9.53 -0.70 -2.50 -1.98 -0.39
-2.37 -1.94 -0.29 -1.64 -9.18 -4.81 -4.72 -7.93 -5.87 -2.71
2.73 13.05 1.42 -7.78 -7.70 -3.69 9.26 5.52 1.87 1.93
9.41 13.17 14.08 -1.72 0.88 -1.66 -0.32 7.82 7.54 9.89
5.16 6.95 13.58 3.95 0.85 2.64 4.98 2.18 11.73 14.58
20.18 12.58 18.97 15.25 9.35 13.06 16.34 23.76
FORECAST
32.55 18.26 9.41
REGRESSION SET IS-- 2
X 1
X 7
THE FINAL RESULT OF FITTING AND FORECAST
RMSE= 9.11
1 -38.00 -42.43
2 -53.00 -47.86
3 -32.00 -39.41
4 -44.00 -35.94
5 -17.00 -31.19
6 -17.00 -32.80
7 -23.00 -36.02
8 -21.00 -28.93
9 -19.00 -26.25
10 -31.00 -33.42
11 -40.00 -41.15
12 -26.00 -37.03
13 -26.00 -31.32
14 -42.00 -36.28
15 -45.00 -39.07
16 -37.00 -35.98
17 -10.00 -26.35
18 2.00 -24.11
19 -37.00 -31.98
20 -31.00 -35.41
21 -27.00 -35.61
22 -31.00 -33.23
23 -39.00 -35.76
24 -48.00 -32.88
25 -41.00 -33.08
26 -32.00 -32.54
27 -43.00 -38.52
28 -37.00 -30.72
29 -22.00 -23.99
30 -45.00 -31.03
31 -38.00 -33.09
32 -40.00 -37.12
33 -43.00 -34.40
34 -35.00 -29.59
35 -29.00 -21.47
36 -10.00 -13.30
37 -8.00 -14.30
38 -27.00 -24.96
39 -12.00 -13.37
40 1.00 -13.02
41 -8.00 -18.02
42 -17.00 -21.87
43 -30.00 -21.16
44 -39.00 -25.92
45 -25.00 -21.50
46 -15.00 -20.25
47 -35.00 -18.25
48 -34.00 -17.46
49 -25.00 -14.60
50 -25.00 -15.65
51 -30.00 -14.57
52 -21.00 -20.37
53 -21.00 -20.31
54 -9.00 -19.74
55 0.00 -11.74
56 -21.00 -18.77
57 -40.00 -23.49
58 -29.00 -20.64
59 -16.00 -10.66
60 -17.00 -7.97
61 -12.00 -11.60
62 -20.00 -18.00
63 -18.00 -19.70
64 -19.00 -19.93
65 -12.00 -16.36
66 7.00 -11.49
67 -4.00 -5.97
68 -5.00 -5.88
69 -22.00 -17.93
70 -3.00 -6.81
71 5.00 1.29
72 -1.00 -10.22
73 -11.00 -16.40
74 -2.00 -15.84
75 -6.00 -12.46
76 -2.00 -11.69
77 10.00 -5.78
78 14.00 -0.37
79 4.00 1.04
80 4.00 -3.55
81 7.00 -0.09
82 1.00 -1.34
83 0.00 -4.96
84 15.00 -1.03
85 6.00 -3.87
86 -8.00 -6.35
87 -5.00 -3.99
88 -6.00 -4.68
89 -6.00 -2.91
90 -13.00 -1.78
91 -2.00 1.54
92 7.00 4.74
93 11.00 2.83
94 -13.00 -4.45
95 -14.00 -7.01
96 -23.00 -0.34
97 7.00 9.65
98 12.00 8.35
99 5.00 3.16
100 0.00 -0.05
101 11.00 13.25
102 10.00 17.32
103 11.00 9.22
104 -15.00 -1.31
105 -12.00 1.58
106 -2.00 2.01
107 -4.00 1.54
108 -8.00 4.19
109 8.00 6.97
110 5.00 9.46
111 -10.00 3.48
112 2.00 6.47
113 15.00 12.97
114 -11.00 2.84
115 -8.00 4.44
116 -21.00 1.45
117 10.00 7.12
118 3.00 5.83
119 12.00 9.79
120 18.00 14.98
121 24.00 16.73
122 9.00 12.60
123 31.00 20.29
124 10.00 16.06
125 7.00 10.95
126 16.00 12.27
127 33.00 15.53
128 33.00 15.04
129 0.00 23.13
130 0.00 21.98
131 0.00 17.68
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -