?? nand.c
字號:
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
/*++
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
--*/
#include <string.h>
#include "def.h"
#include "option.h"
#include "2440addr.h"
#include "2440lib.h"
#include "nand.h"
void __RdPage512(UCHAR *bufPt);
void __RdPage256(UCHAR *bufPt);
// Status bit pattern
#define STATUS_READY 0x40
#define STATUS_ERROR 0x01
#define NF_CMD(cmd) {rNFCMD = (cmd); }
#define NF_ADDR(addr) {rNFADDR = (addr); }
#define NF_nFCE_L() {rNFCONT &= ~(1<<1); }
#define NF_nFCE_H() {rNFCONT |= (1<<1); }
#define NF_RSTECC() {rNFCONT |= (1<<4); }
#if (K9F1G08_SUPPORT||K9F2G08_SUPPORT||K9F4G08_SUPPORT||K9F8G08_SUPPORT)
#define NF_RDDATA() ((*(volatile unsigned*)0x4E000010) )
#else
#define NF_RDDATA() (rNFDATA)
#endif
#define NF_WRDATA(data) {rNFDATA = (data); }
#define NF_WAITRB() {while(!(rNFSTAT&(1<<0)));}
#define NF_CLEAR_RB() {rNFSTAT |= (1<<2); }
#define NF_DETECT_RB() {while(!(rNFSTAT&(1<<2)));}
#define NF_MECC_UnLock() {rNFCONT &= ~(1<<5);}
#define NF_MECC_Lock() {rNFCONT |= (1<<5);}
#define pNFCONF rNFCONF
#define pNFCMD rNFCMD
#define pNFADDR rNFADDR
#define pNFDATA rNFDATA
#define pNFSTAT rNFSTAT
#define pNFECC rNFECC0
#define NF_CE_L() NF_nFCE_L()
#define NF_CE_H() NF_nFCE_H()
#define NF_DATA_R() rNFDATA
#define NF_ECC() rNFECC0
#define NF_RDDATA8() ((*(volatile unsigned char*)0x4E000010) )
typedef union _ECCRegVal
{
DWORD dwECCVal;
BYTE bECCBuf[4];
} ECCRegVal;
#if (K9F1G08_SUPPORT||K9F2G08_SUPPORT||K9F4G08_SUPPORT||K9F8G08_SUPPORT)
#define NFDATA 0x4E000010
#define C_LANG 1
#define DMA 2
#define TRANS_MODE 2
#else
#define AdvFlash 0
#endif
//
// Reset the chip
//
void NF_Reset()
{
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_RESET);
NF_DETECT_RB();
NF_CE_H();
}
// HCLK=133Mhz
#define TACLS 0
#define TWRPH0 6
#define TWRPH1 0
void NF_Init(void)
{
rNFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
rNFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(0<<6)|(0<<5)|(1<<4)|(1<<1)|(1<<0);
rNFSTAT = 0;
}
#if (NF_READID == 1)
void NF_ReadID()
{
USHORT wData1, wData2;
// First we enable chip select
NF_CE_L();
NF_CLEAR_RB();
// Issue commands to the controller
NF_CMD(CMD_READID);
NF_ADDR(0x00);
NF_DETECT_RB();
wData1 = (BYTE)NF_DATA_R();
wData2 = (BYTE)NF_DATA_R();
NF_CE_H();
Uart_SendString("Nand Mfg: ");
Uart_SendDWORD((DWORD)wData1, TRUE);
Uart_SendString("Nand Dev: ");
Uart_SendDWORD((DWORD)wData2, TRUE);
}
#endif
#ifdef READ_SECTOR_INFO
/*
* NAND_ReadSectorInfo
*
* Read SectorInfo out of the spare area. The current implementation only handles
* one sector at a time.
*/
void
NAND_ReadSectorInfo(
SECTOR_ADDR sectorAddr,
PSectorInfo pInfo
)
{
// Chip enable
NF_CE_L();
NF_CLEAR_RB();
// Write the command
NF_CMD(CMD_READ2);
// Write the address
NF_ADDR(0x00);
NF_ADDR(sectorAddr & 0xff);
NF_ADDR((sectorAddr >> 8) & 0xff);
if (NEED_EXT_ADDR) {
NF_ADDR((sectorAddr >> 16) & 0xff);
}
// Wait for the Ready bit
NF_DETECT_RB();
// Read the SectorInfo data (we only need to read first 8 bytes)
pInfo->dwReserved1 = (DWORD) ((BYTE) NF_DATA_R()) << 24;
pInfo->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R()) << 16;
pInfo->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R()) << 8;
pInfo->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R());
// OEM byte
pInfo->bOEMReserved = (BYTE) NF_DATA_R();
// Read the bad block mark
pInfo->bBadBlock = (BYTE) NF_DATA_R();
// Second reserved field (WORD)
pInfo->wReserved2 = ((BYTE) NF_DATA_R() << 8);
pInfo->wReserved2 |= ((BYTE) NF_DATA_R());
NF_CE_H();
}
#endif
// FMD_ReadSector
//
// Read the content of the sector.
//
// startSectorAddr: Starting page address
// pSectorBuff : Buffer for the data portion
// pSectorInfoBuff: Buffer for Sector Info structure
// dwNumSectors : Number of sectors
//
BOOL
FMD_ReadSector(
SECTOR_ADDR startSectorAddr,
LPBYTE pSectorBuff,
PSectorInfo pSectorInfoBuff,
DWORD dwNumSectors
)
{
DWORD i, r = 0;
BYTE ecc0,ecc1,ecc2;
BOOL rc = TRUE;
ECCRegVal eccRegVal;
// BUGBUGBUG: I need to come back to support dwNumSectors > 1
//
// Sanity check
if (!pSectorBuff && !pSectorInfoBuff || dwNumSectors > 1 || !pSectorBuff) {
// Uart_SendString("ERROR_INVALID_PARAMETER\n");
return FALSE;
}
// Uart_SendString("R: ");
// Uart_SendDWORD(startSectorAddr, TRUE);
// Initialize ECC register
NF_RSTECC();
NF_MECC_UnLock();
// Enable the chip
NF_nFCE_L();
NF_CLEAR_RB();
// Issue Read command
NF_CMD(CMD_READ);
#if (K9F1G08_SUPPORT||K9F2G08_SUPPORT||K9F4G08_SUPPORT||K9F8G08_SUPPORT)
NF_ADDR(0); // Column (A[7:0]) = 0
NF_ADDR(0); // A[11:8]
NF_ADDR((startSectorAddr)&0xff); // A[19:12]
NF_ADDR((startSectorAddr>>8)&0xff); // A[27:20]
#if(!K9F1G08_SUPPORT) //if the flash is not K9F1G08,then need the 3thd row address.
NF_ADDR((startSectorAddr>>16)&0xff); // A[30:28]
#endif
NF_CMD(0x30); // 2'nd command
NF_DETECT_RB();
#if TRANS_MODE==C_LANG
for(i=0;i<2048;i++) {
*pSectorBuff++=NF_RDDATA8(); // Read one page
}
#elif TRANS_MODE==DMA
// Nand to memory dma setting
rSRCPND=BIT_DMA0; // Init DMA src pending.
rDISRC0=NFDATA; // Nand flash data register
rDISRCC0=(0<<1) | (1<<0); //arc=AHB,src_addr=fix
rDIDST0=(unsigned)pSectorBuff;
rDIDSTC0=(0<<1) | (0<<0); //dst=AHB,dst_addr=inc;
rDCON0=(1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(0<<23)|(1<<22)|(2<<20)|(2048/4/4);
//Handshake,AHB,interrupt,(4-burst),whole,S/W,no_autoreload,word,count=128;
// DMA on and start.
rDMASKTRIG0=(1<<1)|(1<<0);
while(!(rSRCPND & BIT_DMA0)); // Wait until Dma transfer is done.
rSRCPND=BIT_DMA0;
#endif
NF_MECC_Lock();
// NF_RDDATA8();
// Mecc=NF_RDDATA();
// rNFECC=((Mecc&0xff00)<<8)|(Mecc&0xff);
// rNFMECCD1=((Mecc&0xff000000)>>8)|((Mecc&0xff0000)>>16);
NF_nFCE_H();
// if ((rNFESTAT0&0x3) == 0x0){
return TRUE;
// }
// else {
// return FALSE;
// }
#else
// Set up address
NF_ADDR(0x00);
NF_ADDR((startSectorAddr) & 0xff);
NF_ADDR((startSectorAddr >> 8) & 0xff);
if (NEED_EXT_ADDR) {
NF_ADDR((startSectorAddr >> 16) & 0xff);
}
for (i = 0; i < 5; i++); // wait tWB(100ns)
NF_DETECT_RB(); // wait tR(max 12us)
// read the data
__RdPage512(pSectorBuff);
NF_MECC_Lock();
// Read the ECC from ECC Register
eccRegVal.dwECCVal = NF_ECC();
// Skip first 8 bytes
for(i=0; i<8; i++){
ecc0 = (BYTE)NF_DATA_R();
}
ecc0 = (BYTE)NF_DATA_R();
ecc1 = (BYTE)NF_DATA_R();
ecc2 = (BYTE)NF_DATA_R();
NF_nFCE_H();
if ( startSectorAddr < 0x120 ) // NO ECC Check about EBOOT
{
rc = TRUE;
}
else
{
if( ecc0 != eccRegVal.bECCBuf[0] ||
ecc0 != eccRegVal.bECCBuf[0] ||
ecc0 != eccRegVal.bECCBuf[0] ) {
// Uart_SendString("ECC mismatch for Sector: ");
// Uart_SendDWORD(startSectorAddr, TRUE);
rc = FALSE;
}
}
#endif
return rc;
}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -