亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? lib svm 支持向量算法包 是支持向量必須下的代碼
??
字號:
Python-to-libsvm interfaceIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed a lot of useful suggestions and help.Installation============The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.4 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary tohave SWIG installed because the generated svmc_wrap.c is included inthis package (It was generated using SWIG 1.3.21). If you prefergenerating the interface with SWIG on your own, you can simply removethe generated files with	make morecleanbefore building the module.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.dll is ready in thedirectory windows/python. You need to copy it to this directory.  Thedll file depends on different versions of python, so you may have tore-make it by following the instruction of building windows binariesin libsvm README.Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.dll) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONPATHpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the trainingprocess. The attributes in svm_parameter include svm_type,kernel_type, degree, gamma, coef0, nu, cache_size, C, eps, p,shrinking, nr_weight, weight_label, and weight. Available svm typesinclude C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user cansetup the parameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To conduct n-fold cross validation; predicted labels in the validationprocess are returned.	target = cross_validation(prob, param, n)To predict a new sample with the model:	r = m.predict([1, 1, 1])To obtain decision values of predicting a sample:	d = m.predict_values([1, 1, 1])	To predict a new sample and obtain probability estimates;return value is a dict that maps labels to probabilities.	prd, prb = m.predict_probability([1, 1, 1])	sample of prd : 1.0	sample of prb : {1:0.6, -1:0.4}To obtain sigma of the probability density function for regression;see ../README for the definition of the function.	sigma = m.get_svr_probability()To obtain the probability density function for regression; see../README for the definition of the function.	pdf = m.get_svr_pdf()	probability = pdf(z)To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests various kernels on a three-class problem withC-SVM. It also demonstrates how to obtain decision values andprobability estimates.test_cross_validation.py demonstrates loading data from a file anddoes a ten-fold cross validation on the heart_scale dataset. It makesuse of cross_validation.py which calls the C++ cross validationsubroutine.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久综合999| 韩日欧美一区二区三区| 91免费看片在线观看| 中文字幕在线不卡| 不卡av在线免费观看| 国产精品福利影院| 99久久婷婷国产综合精品电影 | 久久国产生活片100| 欧美mv日韩mv亚洲| 亚洲综合精品久久| 国产精品不卡一区二区三区| 天天综合天天做天天综合| 亚洲最快最全在线视频| 老汉av免费一区二区三区| 久久综合综合久久综合| 狠狠网亚洲精品| 成人听书哪个软件好| 色香蕉久久蜜桃| 欧美一级在线观看| 亚洲国产日产av| 美女免费视频一区| 亚洲综合丝袜美腿| 91精品午夜视频| 成人性生交大片免费看中文| 亚洲欧美日韩成人高清在线一区| 欧美日韩日本视频| 国产成人亚洲综合a∨猫咪| 亚洲黄色免费电影| 精品黑人一区二区三区久久| 91玉足脚交白嫩脚丫在线播放| 日韩二区在线观看| 中文字幕不卡在线| 欧美一区二区三区四区五区| 99riav一区二区三区| 美女网站视频久久| 亚洲美女屁股眼交| 久久久午夜电影| 欧美日韩国产片| 成人av片在线观看| 国产主播一区二区三区| 亚洲女人小视频在线观看| 久久综合久久综合亚洲| 欧美日韩一二三区| 9久草视频在线视频精品| 奇米精品一区二区三区在线观看一| 久久久www免费人成精品| 制服丝袜在线91| 日本久久电影网| 国产999精品久久久久久绿帽| 五月婷婷另类国产| 一区二区三区四区不卡在线| 国产片一区二区| 精品第一国产综合精品aⅴ| 欧美日韩国产一区| 色哟哟国产精品| aaa国产一区| 粉嫩嫩av羞羞动漫久久久| 美女视频黄频大全不卡视频在线播放| 亚洲欧美韩国综合色| 中文字幕在线不卡一区二区三区| 久久人人97超碰com| 日韩欧美亚洲国产另类| 欧美老年两性高潮| 精品视频在线免费看| 在线免费视频一区二区| 91同城在线观看| 色悠悠亚洲一区二区| 成人午夜碰碰视频| 国产福利一区在线| 国产99久久久精品| 盗摄精品av一区二区三区| 国产高清在线精品| 成人性生交大片免费看视频在线| 国产精品自拍av| 国产成人亚洲综合a∨婷婷| 国产精品亚洲一区二区三区妖精 | 香蕉影视欧美成人| 亚洲成av人片在线观看| 香蕉乱码成人久久天堂爱免费| 亚洲人精品午夜| 一区二区三区在线视频免费| 亚洲一区二区在线观看视频| 亚洲午夜电影网| 亚洲一区二区视频在线| 视频精品一区二区| 裸体一区二区三区| 韩国一区二区视频| 国产一区二区三区久久悠悠色av| 国产一区二区三区不卡在线观看| 国产精品夜夜嗨| 99久久久精品| 欧美图区在线视频| 日韩视频国产视频| 国产视频在线观看一区二区三区| 中文幕一区二区三区久久蜜桃| 国产精品毛片久久久久久久| 一片黄亚洲嫩模| 日韩高清在线不卡| 国内不卡的二区三区中文字幕| 国产成人久久精品77777最新版本| 国产盗摄视频一区二区三区| 99久久久精品免费观看国产蜜| 在线观看欧美精品| 日韩美女在线视频| 国产蜜臀av在线一区二区三区| 亚洲精品视频在线观看免费| 午夜激情综合网| 国产在线国偷精品免费看| 成人av电影在线网| 欧美日韩中文字幕一区二区| 欧美zozozo| 亚洲美女免费在线| 精品一区二区三区免费观看| 97精品视频在线观看自产线路二| 欧美老肥妇做.爰bbww视频| 国产午夜精品一区二区三区视频| 日韩美女视频一区| 蜜桃精品视频在线| 91丨porny丨国产| 2欧美一区二区三区在线观看视频| 国产精品第13页| 久久精品噜噜噜成人av农村| 欧美老女人在线| 成人免费在线播放视频| 蜜桃视频一区二区| 色婷婷亚洲婷婷| 久久先锋资源网| 亚洲高清免费视频| 风间由美性色一区二区三区| 欧美日韩亚洲综合一区二区三区| 精品国产伦一区二区三区观看方式| 国产精品麻豆久久久| 久久国产精品99久久久久久老狼| 一本色道综合亚洲| 久久久精品2019中文字幕之3| 亚洲成av人影院在线观看网| jlzzjlzz国产精品久久| 日韩欧美激情一区| 亚洲国产成人精品视频| 懂色av一区二区三区免费看| 制服丝袜激情欧洲亚洲| 亚洲激情中文1区| 99久久精品国产麻豆演员表| 日韩免费电影一区| 视频一区二区欧美| 欧美在线啊v一区| 国产精品乱人伦一区二区| 精品制服美女久久| 91精品国产一区二区人妖| 一区二区三区四区不卡视频| 成人免费电影视频| 久久久夜色精品亚洲| 久久国产成人午夜av影院| 在线综合+亚洲+欧美中文字幕| 一区二区成人在线| 91福利在线观看| 亚洲婷婷国产精品电影人久久| 国产精品一区二区你懂的| 亚洲精品一区二区三区精华液| 婷婷综合另类小说色区| 在线观看视频一区| 一区二区三区av电影| 色爱区综合激月婷婷| 亚洲三级理论片| 91网页版在线| 一区二区免费在线播放| 欧美影院精品一区| 亚洲一区二区三区影院| 欧美视频在线播放| 亚洲一区二区三区视频在线播放| 色狠狠一区二区| 一区二区三区色| 欧美日韩精品一区二区三区| 亚洲国产一区视频| 91精品国产入口| 欧美aⅴ一区二区三区视频| 91精品国产综合久久精品图片| 日韩电影免费一区| 精品国产乱码久久久久久牛牛| 美女高潮久久久| 久久精品视频网| 9人人澡人人爽人人精品| 一区二区三区四区视频精品免费| 欧美日韩一区二区三区视频 | 欧美一区二区在线免费观看| 日韩avvvv在线播放| 日韩精品中文字幕在线不卡尤物 | 日韩精品高清不卡| 亚洲精品一区二区三区四区高清| 国产99久久久国产精品潘金网站| 国产精品国产三级国产aⅴ入口| 色久综合一二码| 日本视频一区二区三区| 精品va天堂亚洲国产| 懂色av中文字幕一区二区三区| 日韩伦理av电影| 67194成人在线观看| 国产·精品毛片| 一区二区三区精品视频| 日韩欧美一二区|