?? p73.f90
字號:
program p73
!------------------------------------------------------------------------
! program 7.3 general program for two- or three-dimensional
! analysis of Laplace's equation
!------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,neq,nband,nn,nr,nip,nodof,nod,ndof,i,k,iel,ndim, &
loaded_nodes,fixed_nodes,np_types
real::det ; character (len=15) :: element
!----------------------------- dynamic arrays----------------------------------
real,allocatable::kv(:),kvh(:),loads(:),disps(:),points(:,:), &
coord(:,:),jac(:,:),der(:,:),deriv(:,:),weights(:), &
prop(:,:),kp(:,:),g_coord(:,:),value(:),kay(:,:)
integer,allocatable::nf(:,:),g(:),num(:),g_num(:,:),g_g( :, :),no(:), &
node(:),etype(:)
!-----------------------input and initialisation------------------------------
open (10, file = 'p73.dat' , status = 'old' , action = 'read')
open (11, file = 'p73.res' , status='replace',action = 'write')
read(10,*)element,nels,nn,nip,nodof,nod,ndim,np_types; ndof=nod*nodof
allocate(nf(nodof,nn),points(nip,ndim),g_coord(ndim,nn),coord(nod,ndim), &
etype(nels),jac(ndim,ndim),weights(nip),num(nod), &
g_num(nod,nels),der(ndim,nod),deriv(ndim,nod),kp(ndof,ndof), &
g(ndof),g_g(ndof,nels),kay(ndim,ndim),prop(ndim,np_types))
read(10,*)prop
etype=1; if(np_types>1)read(10,*)etype
read(10,*)g_coord; read(10,*)g_num
nf=1; read(10,*)nr; if(nr>0)read(10,*)(k,nf(:,k),i=1,nr)
call formnf(nf); neq=maxval(nf); call sample(element,points,weights)
!------------- loop the elements to find nband and store steering vectors ---
nband=0
elements_1: do iel =1,nels
num=g_num(:,iel) ; call num_to_g(num,nf,g); g_g(:,iel)=g
if(nband<bandwidth(g))nband=bandwidth(g)
end do elements_1
write(11,'(a)')"Global coordinates"
do k=1,nn
write(11,'(a,i5,a,3e12.4)')"Node ",k," ",g_coord(:,k); end do
write(11,'(a)')"Global node numbers"
do k=1,nels
write(11,'(a,i5,a,20i4)')"Element ",k," ",g_num(:,k); end do
write(11,'(2(a,i5),/)') &
"There are ",neq," equations and the half bandwidth is ",nband
allocate( kv(neq*(nband+1)),kvh(neq*(nband+1)),loads(0:neq),disps(0:neq))
kv=0.0; loads =0.0
!------------- element stiffness integration and assembly-------------------
elements_2: do iel=1,nels
kay=0.0; do i=1,ndim; kay(i,i)=prop(i,etype(iel)); end do
num=g_num(:,iel); coord=transpose(g_coord(:,num))
g=g_g(:,iel); kp=0.0
integrating_pts_1: do i=1,nip
call shape_der(der,points,i); jac=matmul(der,coord)
det=determinant(jac); call invert(jac)
deriv=matmul(jac,der)
kp= kp+matmul(matmul(transpose(deriv),kay),deriv) &
*det*weights(i)
end do integrating_pts_1
call formkv(kv,kp,g,neq)
end do elements_2
kvh=kv
read(10,*)loaded_nodes
if(loaded_nodes/=0)read(10,*)(k,loads(nf(:,k)),i=1,loaded_nodes)
read(10,*)fixed_nodes
if(fixed_nodes/=0)then
allocate(node(fixed_nodes),no(fixed_nodes),value(fixed_nodes))
read(10,*)(node(i),value(i),i=1,fixed_nodes)
do i=1,fixed_nodes; no(i)=nf(1,node(i)); end do
kv(no)=kv(no)+1.e20; loads(no)=kv(no)*value
end if
!------------------------equation solution------------------------------------
call banred(kv,neq); call bacsub(kv,loads)
!------------------------retrieve flow rates-----------------------------------
call linmul(kvh,loads,disps)
write(11,'(a)')"The nodal values are:"
write(11,'(a)')" Potentials Flow rates"
do k=1,nn
write(11,'(i5,a,2f12.2)')k," ",loads(nf(1,k)),disps(nf(1,k)); end do
write(11,'(a)')" Inflow Outflow"
write(11,'(2f12.2)')sum(disps,mask=disps>0.),sum(disps,mask=disps<0.)
end program p73
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -