亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readmeenglish.txt

?? cluster validation tools matlab toolbox
?? TXT
字號:
Help file of Cluster Validation Toolbox for estimating the number of clusters (CVT-NC)
 (Version 2.0)

Your comments are welcome at:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13916
E-mail: sunice9@yahoo.com

(1) Contents of CVT-NC
    The CVT-NC includes 4 External validity indices and 8 internal validity indices, and the sub-routine "validity_Index.m" is designed to use them. 
    This tool is suitable for the research work such as the performance comparison of different indices on estimation of the number of clusters, algorithm design for applications by using or improving part codes of this tool, and etc. A much better visual tool (more validity indices and clustering algorithms) will come soon, but it is inconvenience to adjust codes. (finding its arrival at http://www.mathworks.com/matlabcentral/fileexchange/loadAuthor.do?objectType=author&objectId=1095267)
i)  External validity indices when true class labels are known:
    Rand index
    Adjusted Rand index
    Mirkin index
    Hubert index
ii) Internal validity indices when true class labels are unknown:
    Silhouette
    Davies-Bouldin
    Calinski-Harabasz
    Krzanowski-Lai
    Hartigan
    weighted inter- to intra-cluster ratio
    Homogeneity
    Separation
iii) Others
    Error rate (compared with true labels)
    System Evolution: it is used to estimate the number of clusters and give separable degrees between clusters.

Note 1: The codes of Rand, Adjusted Rand, Mirkin, Hubert indices are from David Corney (D.Corney@cs.ucl.ac.uk), who holds the copyright.

Note 2: Error rate: The error rate might be inaccurate if  the clustering solution under true NC has error rate >20%, since "valid_errorate" designed here can not deal with complex cases.

(2) Contents of main file "mainClusterValidationNC.m" 
    It is designed to use validity indices to estimate the number of clusters (NC) for PAM and K-means clustering algorithms. 
Part 1: Selection of a data set, initialization and computation of distance/dissimilarity matrix. 
Part 2: A clustering algorithm Runs (N-1 times) to yield k clusters (k=2,3,...,N). 
Part 3: Cluster validation for Estimating the number of clusters (NC). "validity_Index"
Part 4: System evolution estimates NC.  "SystemEvolution_findk"

Note 1: The programs of Part 4 and the demo data sets are available from:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=11889

Note2: The programs are tested under Matlab 6.5 and 7.2.

(3) PAM & K-means clustering algorithms included in this program
  The K-means codes are from Mathworks. The initialization of K-means is to select K centroids from data at random, for other choices refer to the kmeans.m of Matlab (inner function of Matlab).

  The PAM (partitioning around medoids) is a robust clustering algorithm to minimize a sum of dissimilarities of data points to their closest medoids, and tends to be more robust than K-means, or a robust “version” of K-means. PAM needs pre-assigned NC as input parameter, similar to K-means. It seems not suitable to large data sets, and might run slow for a data set with number of data points over such as 2000.
  The programs of PAM have been included in the Matlab library LIBRA (http://wis.kuleuven.be/stat/robust/LIBRA.html), the statistic analysis software S-plus (http://www.splus.com/) and the cluster package of R (http://cran.r-project.org/). The PAM codes in this program are from LIBRA.

(4) Pearson similarity/distance
  Pearson similarity/distance is the linear correlation coefficient between two vectors and has its value range from -1 to 1, and it is commonly used to measure the similarity/distances between genes. 
  For the correct computation of indices, in this program the correlation coefficient is normalized to [0,1] by R(i,j)=(1-R(i,j))/2 as distances, where 0 is the closest distance and 1 the farthest one, and it is easy to convert it back by 1-2R(i,j). 
  For example, assume that there be two genes g1 and g2, then R(g1,g2)=1 means that their distance is the farthest, and R(g1,g1)=0 means that g1 itself has the closest distance. 

(5) Input: a data file like "yourdata.txt"
  The input data file is the tab delimited text file with numeric tabular data or similar Matlab file format (e.g. rows denote data points/elements and columns denote dimensions),  and all the data should be numeric values and without missing values.

  If you use Euclidean distance, please put the data file before "case 21". If true class labels are known and in 1st column, put the data file before "case 11", otherwise in "case 11". 
  If you use Pearson distance, please put the data file after "case 20". If true class labels are known and in 1st column, put the data file between "case 21" and "case 40", otherwise after "case 40". 
 
(6) Output
   The PAM/K-means is first used to divide a data set into k clusters (k=1,2,3,…,N), resulting in N clustering solutions; and then the validity indices/methods estimate the optimal NC ko based on these solutions with seeking limit N=ko+6. The found ko indicated by a square symbol is shown in the figures.
   When a cluster has few elements (e.g.<4), the PAM/K-means will not go on (see rows in the clustering part)

(7) Demo data sets (all have true class labels in 1st column of the data file)
Dataset             #class   #elements    dimension    features
4k2bigsmall_far      4 	400	          2	    far small-large clusters
4k2bigsmall_lap      4	400	          2	    overlapping small-large clusters
8k2close                  8	800	          2	    close well-separated clusters
8k2lap                      8	800	          2	    overlapping clusters
6k20close                6	400	          20	close well-separated
6k40far	                6	400	          40	far well-separated
4k20lap	                4	400	          20	overlapping
4k40lap	                4	400	          40	overlapping
leuk72_3k	                3	72	          39	close well-separated
lym96_4k	                4	96	          46	close well-separated
g205	                4	205	          80	close large-small
y208	                4	208	          79	far well-separated

Note: These demo data sets are available from:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=11889

---------------------------------------------------------------------------------------------------
This software is distributed under the LGPL license.  (see Copyright.txt)
Copyright (C) 2006-2007.
Last modified: April 5, 2007

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩一级片在线观看| 国产成人亚洲精品青草天美| 国产欧美日韩视频一区二区| 日韩欧美在线123| 欧美一区二区三区四区视频| 欧美在线观看18| 欧美自拍丝袜亚洲| 欧美日韩精品欧美日韩精品| 欧美日本精品一区二区三区| 4hu四虎永久在线影院成人| 欧美日韩一区二区在线观看| 在线一区二区三区四区五区| 欧美午夜在线观看| 日韩一区二区三区在线视频| 欧美一三区三区四区免费在线看| 欧美性极品少妇| 欧美亚洲一区二区在线观看| 678五月天丁香亚洲综合网| 欧美一级国产精品| 精品粉嫩超白一线天av| 在线不卡中文字幕| 久久免费电影网| 国产精品久线观看视频| 中文字幕欧美日韩一区| 国产精品国产自产拍高清av王其| 亚洲日本韩国一区| 亚洲成人av福利| 极品瑜伽女神91| 99久久精品国产导航| 欧美这里有精品| 欧美变态tickling挠脚心| 日本一区二区视频在线| 亚洲一区视频在线| 男人的天堂久久精品| 不卡在线观看av| 欧美久久高跟鞋激| 久久九九影视网| 亚洲一区二区在线免费看| 午夜欧美一区二区三区在线播放| 国产一区二区三区在线看麻豆| 成人激情免费电影网址| 欧美精品日韩精品| 国产精品美女久久久久aⅴ | 久久国产精品一区二区| 懂色av噜噜一区二区三区av| 91视频精品在这里| 精品国免费一区二区三区| 中文字幕日韩欧美一区二区三区| 天天做天天摸天天爽国产一区| 韩国v欧美v亚洲v日本v| 色婷婷综合五月| 国产亚洲精品7777| 亚洲综合久久av| 岛国一区二区三区| 日韩免费一区二区| 亚洲永久精品大片| 99国产麻豆精品| 欧美精品一区二区久久久| 夜夜爽夜夜爽精品视频| 丁香天五香天堂综合| 日韩亚洲欧美综合| 午夜精品爽啪视频| 91蝌蚪porny| 国产精品视频yy9299一区| 免费观看在线色综合| 欧美色涩在线第一页| 国产精品麻豆久久久| 国产综合色精品一区二区三区| 欧美视频三区在线播放| 伊人夜夜躁av伊人久久| av在线综合网| 国产三区在线成人av| 久久成人免费日本黄色| 777xxx欧美| 日本亚洲欧美天堂免费| 欧美色倩网站大全免费| 亚洲小说欧美激情另类| 欧美无砖专区一中文字| 亚洲一区二区三区四区在线 | 亚洲天堂成人网| 99久久婷婷国产综合精品电影 | 久久综合色婷婷| 久久精品国产久精国产爱| 91精品国产91久久久久久一区二区| 亚洲国产视频在线| 欧美久久久久中文字幕| 日韩精品国产欧美| 日韩欧美亚洲国产精品字幕久久久| 日日夜夜免费精品| 日韩一区二区免费电影| 免费的国产精品| 久久精品一区蜜桃臀影院| 国产成人丝袜美腿| 亚洲天堂久久久久久久| 欧美日韩情趣电影| 蜜臂av日日欢夜夜爽一区| 精品播放一区二区| 粉嫩aⅴ一区二区三区四区五区| 国产精品无遮挡| 在线观看视频一区二区欧美日韩| 午夜不卡在线视频| 2021中文字幕一区亚洲| 懂色av一区二区三区免费看| 亚洲视频一区在线| 欧美一区二区三区日韩视频| 国产一区在线看| 中文字幕亚洲成人| 欧美日韩免费电影| 国内久久精品视频| 国产精品伦理在线| 欧美高清视频在线高清观看mv色露露十八 | 日韩一级在线观看| 福利一区二区在线| 亚洲永久精品大片| 国产亚洲综合性久久久影院| 色欧美片视频在线观看| 蜜桃在线一区二区三区| 欧美高清在线视频| 欧美网站一区二区| 国产福利精品一区| 丝袜诱惑亚洲看片| 国产精品免费久久久久| 欧美日韩一区二区三区高清| 美国精品在线观看| 国产精品久久久久四虎| 日韩一卡二卡三卡国产欧美| 91亚洲精品久久久蜜桃网站| 日韩高清在线不卡| 一区二区三区蜜桃| 久久新电视剧免费观看| 欧美视频在线观看一区| 成人免费不卡视频| 久久电影网站中文字幕 | 亚洲精品成人在线| 精品久久一区二区三区| 欧美日韩在线直播| 99久久国产综合色|国产精品| 麻豆91免费看| 亚洲色图.com| 国产目拍亚洲精品99久久精品| 欧美一激情一区二区三区| 91在线观看地址| 成人免费看的视频| 国内精品国产成人国产三级粉色| 亚洲午夜av在线| 亚洲免费大片在线观看| 欧美国产成人精品| 国产清纯白嫩初高生在线观看91| 日韩欧美一级二级三级久久久| 欧美色综合网站| 欧美婷婷六月丁香综合色| 99久久免费国产| av色综合久久天堂av综合| 风流少妇一区二区| 国产成人av一区二区| 国产美女精品人人做人人爽| 美女一区二区三区在线观看| 日日噜噜夜夜狠狠视频欧美人| 亚洲一区二区影院| 亚洲第一二三四区| 首页国产丝袜综合| 日本网站在线观看一区二区三区 | 国产精品三级视频| 国产精品青草久久| 国产精品成人网| 亚洲欧美激情视频在线观看一区二区三区 | 蜜桃av一区二区三区| 韩国欧美一区二区| 国产成人精品aa毛片| 99re热这里只有精品视频| 波多野结衣在线一区| 91在线视频网址| 欧美在线观看一区| 777xxx欧美| 国产偷国产偷亚洲高清人白洁 | 午夜欧美视频在线观看| 免费日韩伦理电影| 国产成人亚洲综合a∨婷婷图片 | 中文字幕视频一区二区三区久| 亚洲欧美一区二区视频| 亚洲欧美日韩中文播放| 亚洲自拍偷拍图区| 麻豆精品国产91久久久久久| 国内欧美视频一区二区| a美女胸又www黄视频久久| 欧美无乱码久久久免费午夜一区| 欧美一区二区三区四区久久| 久久亚洲免费视频| 亚洲精品欧美综合四区| 蜜臀精品久久久久久蜜臀| 国产伦精品一区二区三区免费| 成人激情av网| 日韩欧美一级特黄在线播放| 亚洲国产wwwccc36天堂| 国产精品99久久久久久有的能看 | 欧美一区二区三区不卡| 一区二区中文字幕在线| 久久精品国产99久久6| 不卡电影一区二区三区| 日韩欧美一区二区视频|