?? ncr5380.c
字號(hào):
/*
* NCR 5380 generic driver routines. These should make it *trivial*
* to implement 5380 SCSI drivers under Linux with a non-trantor
* architecture.
*
* Note that these routines also work with NR53c400 family chips.
*
* Copyright 1993, Drew Eckhardt
* Visionary Computing
* (Unix and Linux consulting and custom programming)
* drew@colorado.edu
* +1 (303) 666-5836
*
* DISTRIBUTION REALEASE 4.
*
* For more information, please consult
*
* NCR 5380 Family
* SCSI Protocol Controller
* Databook
*
* NCR Microelectronics
* 1635 Aeroplaza Drive
* Colorado Springs, CO 80916
* 1+ (719) 578-3400
* 1+ (800) 334-5454
*/
/*
* $Log: NCR5380.c,v $
* Revision 1.5 1994/01/19 09:14:57 drew
* Fixed udelay() hack that was being used on DATAOUT phases
* instead of a propper wait for the final handshake.
*
* Revision 1.4 1994/01/19 06:44:25 drew
* *** empty log message ***
*
* Revision 1.3 1994/01/19 05:24:40 drew
* Added support for TCR LAST_BYTE_SENT bit.
*
* Revision 1.2 1994/01/15 06:14:11 drew
* REAL DMA support, bug fixes.
*
* Revision 1.1 1994/01/15 06:00:54 drew
* Initial revision
*
*/
/*
* Furthur development / testing that should be done :
* 1. Cleanup the NCR5380_transfer_dma function and DMA operation complete
* code so that everything does the same thing that's done at the
* end of a pseudo-DMA read operation.
*
* 2. Fix REAL_DMA (interrupt driven, polled works fine) -
* basically, transfer size needs to be reduced by one
* and the last byte read as is done with PSEUDO_DMA.
*
* 3. Test USLEEP code
*
* 4. Test SCSI-II tagged queueing (I have no devices which support
* tagged queueing)
*
* 5. Test linked command handling code after Eric is ready with
* the high level code.
*/
#ifndef notyet
#undef LINKED
#undef USLEEP
#undef REAL_DMA
#endif
#ifdef REAL_DMA_POLL
#undef READ_OVERRUNS
#define READ_OVERRUNS
#endif
/*
* Design
* Issues :
*
* The other Linux SCSI drivers were written when Linux was Intel PC-only,
* and specifically for each board rather than each chip. This makes their
* adaptation to platforms like the Mac (Some of which use NCR5380's)
* more difficult than it has to be.
*
* Also, many of the SCSI drivers were written before the command queing
* routines were implemented, meaning their implementations of queued
* commands were hacked on rather than designed in from the start.
*
* When I designed the Linux SCSI drivers I figured that
* while having two different SCSI boards in a system might be useful
* for debugging things, two of the same type wouldn't be used.
* Well, I was wrong and a number of users have mailed me about running
* multiple high-performance SCSI boards in a server.
*
* Finally, when I get questions from users, I have no idea what
* revision of my driver they are running.
*
* This driver attempts to address these problems :
* This is a generic 5380 driver. To use it on a different platform,
* one simply writes appropriate system specific macros (ie, data
* transfer - some PC's will use the I/O bus, 68K's must use
* memory mapped) and drops this file in their 'C' wrapper.
*
* As far as command queueing, two queues are maintained for
* each 5380 in the system - commands that haven't been issued yet,
* and commands that are currently executing. This means that an
* unlimited number of commands may be queued, letting
* more commands propogate from the higher driver levels giving higher
* througput. Note that both I_T_L and I_T_L_Q nexuses are supported,
* allowing multiple commands to propogate all the way to a SCSI-II device
* while a command is allready executing.
*
* To solve the multiple-boards-in-the-same-system problem,
* there is a separate instance structure for each instance
* of a 5380 in the system. So, mutliple NCR5380 drivers will
* be able to coexist with appropriate changes to the high level
* SCSI code.
*
* A NCR5380_PUBLIC_REVISION macro is provided, with the release
* number (updated for each public release) printed by the
* NCR5380_print_options command, which should be called from the
* wrapper detect function, so that I know what release of the driver
* users are using.
*
* Issues specific to the NCR5380 :
*
* When used in a PIO or pseudo-dma mode, the NCR5380 is a braindead
* piece of hardware that requires you to sit in a loop polling for
* the REQ signal as long as you are connected. Some devices are
* brain dead (ie, many TEXEL CD ROM drives) and won't disconnect
* while doing long seek operations.
*
* The workarround for this is to keep track of devices that have
* disconnected. If the device hasn't disconnected, for commands that
* should disconnect, we do something like
*
* while (!REQ is asserted) { sleep for N usecs; poll for M usecs }
*
* Some tweaking of N and M needs to be done. An algorithm based
* on "time to data" would give the best results as long as short time
* to datas (ie, on the same track) were considered, however these
* broken devices are the exception rather than the rule and I'd rather
* spend my time optomizing for the normal case.
*
* Architecture :
*
* At the heart of the design is a corroutine, NCR5380_main,
* which is started when not running by the interrupt handler,
* timer, and queue command function. It attempts to establish
* I_T_L or I_T_L_Q nexuses by removing the commands from the
* issue queue and calling NCR5380_select() if a nexus
* is not established.
*
* Once a nexus is established, the NCR5380_information_transfer()
* phase goes through the various phases as instructed by the target.
* if the target goes into MSG IN and sends a DISCONNECT message,
* the command structure is placed into the per instance disconnected
* queue, and NCR5380_main tries to find more work. If USLEEP
* was defined, and the target is idle for too long, the system
* will try to sleep.
*
* If a command has disconnected, eventually an interrupt will trigger,
* calling NCR5380_intr() which will inturn call NCR5380_reselect
* to restablish a nexus. This will run main if necessary.
*
* On command termination, the done function will be called as
* appropriate.
*
* SCSI pointers are maintained in the SCp field of SCSI command
* structures, being initialized after the command is connected
* in NCR5380_select, and set as appropriate in NCR5380_information_transfer.
* Note that in violation of the standard, an implicit SAVE POINTERS operation
* is done, since some BROKEN disks fail to issue an explicit SAVE POINTERS.
*/
/*
* Using this file :
* This file a skeleton Linux SCSI driver for the NCR 5380 series
* of chips. To use it, you write a architecture specific functions
* and macros and include this file in your driver.
*
* These macros control options :
* AUTOPROBE_IRQ - if defined, the NCR5380_probe_irq() function will be
* defined.
*
* AUTOSENSE - if defined, REQUEST SENSE will be performed automatically
* for commands that return with a CHECK CONDITION status.
*
* DIFFERENTIAL - if defined, NCR53c81 chips will use external differential
* tracievers.
*
* LINKED - if defined, linked commands are supported.
*
* PSEUDO_DMA - if defined, PSEUDO DMA is used during the data transfer phases.
*
* REAL_DMA - if defined, REAL DMA is used during the data transfer phases.
*
* REAL_DMA_POLL - if defined, REAL DMA is used but the driver doesn't
* rely on phase mismatch and EOP interrupts to determine end
* of phase.
*
* SCSI2 - if defined, SCSI-2 tagged queing is used where possible
*
* UNSAFE - leave interrupts enabled during pseudo-DMA transfers. You
* only really want to use this if you're having a problem with
* dropped characters during high speed communications, and even
* then, you're going to be better off twiddling with transfersize
* in the high level code.
*
* USLEEP - if defined, on devices that aren't disconnecting from the
* bus, we will go to sleep so that the CPU can get real work done
* when we run a command that won't complete immediately.
*
* Note that if USLEEP is defined, NCR5380_TIMER *must* also be
* defined.
*
* Defaults for these will be provided if USLEEP is defined, although
* the user may want to adjust these to allocate CPU resources to
* the SCSI driver or "real" code.
*
* USLEEP_SLEEP - amount of time, in jiffies, to sleep
*
* USLEEP_POLL - amount of time, in jiffies, to poll
*
* These macros MUST be defined :
* NCR5380_local_declare() - declare any local variables needed for your transfer
* routines.
*
* NCR5380_setup(instance) - initialize any local variables needed from a given
* instance of the host adapter for NCR5380_{read,write,pread,pwrite}
*
* NCR5380_read(register) - read from the specified register
*
* NCR5380_write(register, value) - write to the specific register
*
* NCR5380_implementation_fields - additional fields needed for this
* specific implementation of the NCR5380
*
* Either real DMA *or* pseudo DMA may be implemented
* REAL functions :
* NCR5380_REAL_DMA should be defined if real DMA is to be used.
* Note that the DMA setup functions should return the number of bytes
* that they were able to program the controller for.
*
* Also note that generic i386/PC versions of these macros are
* available as NCR5380_i386_dma_write_setup,
* NCR5380_i386_dma_read_setup, and NCR5380_i386_dma_residual.
*
* NCR5380_dma_write_setup(instance, src, count) - initialize
* NCR5380_dma_read_setup(instance, dst, count) - initialize
* NCR5380_dma_residual(instance); - residual count
*
* PSEUDO functions :
* NCR5380_pwrite(instance, src, count)
* NCR5380_pread(instance, dst, count);
*
* If nothing specific to this implementation needs doing (ie, with external
* hardware), you must also define
*
* NCR5380_queue_command
* NCR5380_reset
* NCR5380_abort
*
* to be the global entry points into the specific driver, ie
* #define NCR5380_queue_command t128_queue_command.
*
* If this is not done, the routines will be defined as static functions
* with the NCR5380* names and the user must provide a globally
* accessable wrapper function.
*
* The generic driver is initialized by calling NCR5380_init(instance),
* after setting the appropriate host specific fields and ID. If the
* driver wishes to autoprobe for an IRQ line, the NCR5380_probe_irq(instance,
* possible) function may be used. Before the specific driver initialization
* code finishes, NCR5380_print_options should be called.
*/
static struct Scsi_Host *first_instance = NULL;
static Scsi_Host_Template *the_template = NULL;
/*
* Function : void initialize_SCp(Scsi_Cmnd *cmd)
*
* Purpose : initialize the saved data pointers for cmd to point to the
* start of the buffer.
*
* Inputs : cmd - Scsi_Cmnd structure to have pointers reset.
*/
static __inline__ void initialize_SCp(Scsi_Cmnd *cmd) {
/*
* Initialize the Scsi Pointer field so that all of the commands in the
* various queues are valid.
*/
if (cmd->use_sg) {
cmd->SCp.buffer = (struct scatterlist *) cmd->buffer;
cmd->SCp.buffers_residual = cmd->use_sg - 1;
cmd->SCp.ptr = (char *) cmd->SCp.buffer->address;
cmd->SCp.this_residual = cmd->SCp.buffer->length;
} else {
cmd->SCp.buffer = NULL;
cmd->SCp.buffers_residual = 0;
cmd->SCp.ptr = (char *) cmd->request_buffer;
cmd->SCp.this_residual = cmd->request_bufflen;
}
}
#include <linux/delay.h>
#ifdef NDEBUG
static struct {
unsigned char mask;
char * name;}
signals[] = {{ SR_DBP, "PARITY"}, { SR_RST, "RST" }, { SR_BSY, "BSY" },
{ SR_REQ, "REQ" }, { SR_MSG, "MSG" }, { SR_CD, "CD" }, { SR_IO, "IO" },
{ SR_SEL, "SEL" }, {0, NULL}},
basrs[] = {{BASR_ATN, "ATN"}, {BASR_ACK, "ACK"}, {0, NULL}},
icrs[] = {{ICR_ASSERT_RST, "ASSERT RST"},{ICR_ASSERT_ACK, "ASSERT ACK"},
{ICR_ASSERT_BSY, "ASSERT BSY"}, {ICR_ASSERT_SEL, "ASSERT SEL"},
{ICR_ASSERT_ATN, "ASSERT ATN"}, {ICR_ASSERT_DATA, "ASSERT DATA"},
{0, NULL}},
mrs[] = {{MR_BLOCK_DMA_MODE, "MODE BLOCK DMA"}, {MR_TARGET, "MODE TARGET"},
{MR_ENABLE_PAR_CHECK, "MODE PARITY CHECK"}, {MR_ENABLE_PAR_INTR,
"MODE PARITY INTR"}, {MR_MONITOR_BSY, "MODE MONITOR BSY"},
{MR_DMA_MODE, "MODE DMA"}, {MR_ARBITRATE, "MODE ARBITRATION"},
{0, NULL}};
/*
* Function : void NCR5380_print(struct Scsi_Host *instance)
*
* Purpose : print the SCSI bus signals for debugging purposes
*
* Input : instance - which NCR5380
*/
static void NCR5380_print(struct Scsi_Host *instance) {
NCR5380_local_declare();
unsigned char status, data, basr, mr, icr, i;
NCR5380_setup(instance);
cli();
data = NCR5380_read(CURRENT_SCSI_DATA_REG);
status = NCR5380_read(STATUS_REG);
mr = NCR5380_read(MODE_REG);
icr = NCR5380_read(INITIATOR_COMMAND_REG);
basr = NCR5380_read(BUS_AND_STATUS_REG);
sti();
for (i = 0; signals[i].mask ; ++i)
if (status & signals[i].mask)
printk(" %s", signals[i].name);
for (i = 0; basrs[i].mask ; ++i)
if (basr & basrs[i].mask)
printk(" %s", basrs[i].name);
for (i = 0; icrs[i].mask; ++i)
if (icr & icrs[i].mask)
printk(" %s", icrs[i].name);
for (i = 0; mrs[i].mask; ++i)
if (mr & mrs[i].mask)
printk(" %s", mrs[i].name);
printk("\n");
}
static struct {
unsigned char value;
char *name;
} phases[] = {
{PHASE_DATAOUT, "DATAOUT"}, {PHASE_DATAIN, "DATAIN"}, {PHASE_CMDOUT, "CMDOUT"},
{PHASE_STATIN, "STATIN"}, {PHASE_MSGOUT, "MSGOUT"}, {PHASE_MSGIN, "MSGIN"},
{PHASE_UNKNOWN, "UNKNOWN"}};
/*
* Function : void NCR5380_print_phase(struct Scsi_Host *instance)
*
* Purpose : print the current SCSI phase for debugging purposes
*
* Input : instance - which NCR5380
*/
static void NCR5380_print_phase(struct Scsi_Host *instance) {
NCR5380_local_declare();
unsigned char status;
int i;
NCR5380_setup(instance);
status = NCR5380_read(STATUS_REG);
if (!(status & SR_REQ))
printk("scsi%d : REQ not asserted, phase unknown.\n",
instance->host_no);
else {
for (i = 0; (phases[i].value != PHASE_UNKNOWN) &&
(phases[i].value != (status & PHASE_MASK)); ++i);
printk("scsi%d : phase %s\n", instance->host_no, phases[i].name);
}
}
#endif
/*
* We need to have our corroutine active given these constraints :
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -