?? jakesmodel.m
字號:
%%%%% Jakes Model %%%%%
function [model,time]=JakesModel(p,Fd,T)
%%% fd : Max Doppler shift
%%% T : Sampling interval
%%% num : Sampling Point
%%% P : Factor of Correlation Time/Sampling Interval(if want to observe the time selective fading, observe time must longer than Correlation Time, so, total number of sampling points must larger than P)
%%% M : Order of Jakes Model (initially set M = 16)
%%% N : Number of the arrive phases that are uniformly distributed (N = 4*M + 2)
%%% a : Max arrive phase of the multipaths (initially set a = 0)
%%% Begin : Simulation begining time
%%% beta_n : Arrive phase of the nth. multipath
%%% fn : Doppler shift of the nth. multipath
%%% h_I : inphase component of the model
%%% h_Q : quadrature component of the model
%%% model : Jakes Model outcome
%%% time : Simulation time
%%%%% Define Parameters %%%%%
fd = Fd; P = p;
M = 8;
N = 4*M + 2;
a = 0;
Begin = 1000;
Tc = 1/fd; % Correlation Time
T = Tc/P; % ampling Interval Time << Correlation Time
num = 0;
%%%%% Model Design %%%%%
for t = Begin+T:T:(Begin+100*Tc) % insure that the observe time is longer than a Correlation Time
num = num + 1;
h_I = 0;
h_Q = 0;
for n = 1:M
beta_n = pi*n/M;
fn = fd*cos(2*pi*n/N);
h_I = h_I + sqrt(2)*cos(beta_n)*cos(2*pi*fn*t);
h_Q = h_Q + sqrt(2)*sin(beta_n)*cos(2*pi*fn*t);
% h_I = h_I + sqrt(2/(M+1))*cos(beta_n)*cos(2*pi*fn*t); % Energy normolized
% h_Q = h_Q + sqrt(2/(M))*sin(beta_n)*cos(2*pi*fn*t); % Energy normolized
end
h_I = h_I + sqrt(1/(M+1))*cos(a)*cos(2*pi*fd*t);
h_Q = h_Q + sqrt(1/(M))*sin(a)*cos(2*pi*fd*t);
Model(num) = h_I + h_Q*i;
end
Time = T*(1:length(Model));
%%%%% Return %%%%%
model = Model;
time = Time;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -