?? ssubmmse.m
字號:
function [ss,zo]=ssubmmse(si,fsz,pp)
%SSUBMMSE performs speech enhancement using mmse estimate of spectral amplitude or log amplitude [SS,ZO]=(S,FSZ,P)
%
% Inputs:
% si input speech signal
% fsz sample frequency in Hz
% Alternatively, the input state from a previous call (see below)
% pp algorithm parameters [optional]
%
% Outputs:
% ss output enhanced speech (length is rounded down to the nearest frame boundary)
% zo output state
%
% The algorithm operation is controlled by a small number of parameters:
%
% pp.of % overlap factor = (fft length)/(frame increment) [2]
% pp.ti % desired frame increment [0.016 seconds]
% pp.ri % set to 1 to round ti to the nearest power of 2 samples [0]
% pp.ta % Time const for smoothing SNR estimate [0.396 seconds]
% pp.gx % maximum posterior SNR as a power ratio [1000]
% pp.xn % minimum prior SNR [0]
% pp.lg % optimal estimate for log spectrum rather than spectrum [1]
%
% In addition it is possible to specify parameters for the noise estimation algorithm
% which implements reference [3] from which equation numbers are given in parentheses.
% They are as follows:
%
% pp.taca % (11): smoothing time constant for alpha_c [0.0449 seconds]
% pp.tamax % (3): max smoothing time constant [0.392 seconds]
% pp.taminh % (3): min smoothing time constant (upper limit) [0.0133 seconds]
% pp.tpfall % (12): time constant for P to fall [0.064 seconds]
% pp.tbmax % (20): max smoothing time constant [0.0717 seconds]
% pp.qeqmin % (23): minimum value of Qeq [2]
% pp.qeqmax % max value of Qeq per frame [14]
% pp.av % (23)+13 lines: fudge factor for bc calculation [2.12]
% pp.td % time to take minimum over [1.536 seconds]
% pp.nu % number of subwindows to use [3]
% pp.qith % Q-inverse thresholds to select maximum noise slope [0.03 0.05 0.06 Inf ]
% pp.nsmdb % corresponding noise slope thresholds in dB/second [47 31.4 15.7 4.1]
%
%
% If convenient, you can call specsub in chunks of arbitrary size. Thus the following are equivalent:
%
% (a) y=ssubmmse(s,fs);
%
% (b) [y1,z]=ssubmmse(s(1:1000),fs);
% [y2,z]=ssubmmse(s(1001:2000),z);
% y3=ssubmmse(s(2001:end),z);
% y=[y1; y2; y3];
%
% Note that in all cases the number of output samples will be less than the number of input samples if
% the input length is not an exact number of frames. In addition, if two output arguments
% are specified, the last partial frame samples will be retained for overlap adding
% with the output from the next call to specsub().
%
% Refs:
% [1] Ephraim, Y. & Malah, D.
% Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator
% IEEE Trans Acoustics Speech and Signal Processing, 32(6):1109-1121, Dec 1984
% [2] Ephraim, Y. & Malah, D.
% Speech enhancement using a minimum mean-square error log-spectral amplitude estimator
% IEEE Trans Acoustics Speech and Signal Processing, 33(2):443-445, Apr 1985
% [3] Rainer Martin.
% Noise power spectral density estimation based on optimal smoothing and minimum statistics.
% IEEE Trans. Speech and Audio Processing, 9(5):504-512, July 2001.
% Copyright (C) Mike Brookes 2004
% Version: $Id: ssubmmse.m,v 1.1 2008/05/27 20:36:28 dmb Exp $
%
% VOICEBOX is a MATLAB toolbox for speech processing.
% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You can obtain a copy of the GNU General Public License from
% http://www.gnu.org/copyleft/gpl.html or by writing to
% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isstruct(fsz)
fs=fsz.fs;
qq=fsz.qq;
qp=fsz.qp;
ze=fsz.ze;
s=zeros(length(fsz.si)+length(si(:)),1); % allocate space for speech
s(1:length(fsz.si))=fsz.si;
s(length(fsz.si)+1:end)=si(:);
else
fs=fsz; % sample frequency
s=si(:);
% default algorithm constants
qq.of=2; % overlap factor = (fft length)/(frame increment)
qq.ti=16e-3; % desired frame increment (16 ms)
qq.ri=0; % round ni to the nearest power of 2
qq.ta=0.396; % Time const for smoothing SNR estimate = -tinc/log(0.98) from [1]
qq.gx=1000; % maximum posterior SNR = 30dB
qq.xn=0; % minimum prior SNR = -Inf dB
qq.lg=1; % use log-domain estimator by default
if nargin>=3 && ~isempty(pp)
qp=pp; % save for estnoisem call
qqn=fieldnames(qq);
for i=1:length(qqn)
if isfield(pp,qqn{i})
qq.(qqn{i})=pp.(qqn{i});
end
end
else
qp=struct; % make an empty structure
end
end
% derived algorithm constants
if qq.ri
ni=pow2(nextpow2(ti*fs*sqrt(0.5)));
else
ni=round(qq.ti*fs); % frame increment in samples
end
tinc=ni/fs; % true frame increment time
a=exp(-tinc/qq.ta); % SNR smoothing coefficient
gmax=qq.gx; % max posterior SNR = 20 dB
kk=sqrt(2*pi); % sqrt(8)*Gamma(1.5) - required constant
xn=qq.xn; % floor for prior SNR, xi
% calculate power spectrum in frames
no=round(qq.of); % integer overlap factor
nf=ni*no; % fft length
w=sqrt(hamming(nf+1))'; w(end)=[]; % for now always use sqrt hamming window
w=w/sqrt(sum(w(1:ni:nf).^2)); % normalize to give overall gain of 1
y=enframe(s,w,ni);
yf=rfft(y,nf,2);
yp=yf.*conj(yf); % power spectrum of input speech
[nr,nf2]=size(yp); % number of frames
if isstruct(fsz)
[dp,ze]=estnoisem(yp,ze); % estimate the noise using minimum statistics
ssv=fsz.ssv;
xu=fsz.xu; % saved unsmoothed SNR
else
[dp,ze]=estnoisem(yp,tinc,qp); % estimate the noise using minimum statistics
ssv=zeros(ni*(no-1),1); % dummy saved overlap
xu=1; % dummy unsmoothed SNR from previous frame
end
if ~nr % no data frames
ss=[];
else
gam=min(yp./dp,gmax); % gamma = posterior SNR
g=zeros(nr,nf2); % create space for gain matrix
if qq.lg % use log domain estimator
for i=1:nr
gami=gam(i,:);
xi=a*xu+(1-a)*max(gami-1,xn);
xir=xi./(1+xi);
gi=xir.*exp(0.5*expint(xir.*gami));
g(i,:)=gi; % save gain for later
xu=gami.*gi.^2; % unsmoothed prior SNR
end
else
for i=1:nr
gami=gam(i,:);
xi=a*xu+(1-a)*max(gami-1,xn);
v=0.5*xi.*gami./(1+xi); % note that this is 0.5*vk in [1]
gi=(0.277+2*v)./gami; % accurate to 0.02 dB for v>0.5
mv=v<0.5;
if any(mv)
vmv=v(mv);
gi(mv)=kk*sqrt(vmv).*((0.5+vmv).*besseli(0,vmv)+vmv.*besseli(1,vmv))./(gami(mv).*exp(vmv));
end
g(i,:)=gi; % save gain for later
xu=gami.*gi.^2; % unsmoothed prior SNR
end
end
se=(irfft((yf.*g).',nf).').*repmat(w,nr,1); % inverse dft and apply output window
ss=zeros(ni*(nr+no-1),no); % space for overlapped output speech
ss(1:ni*(no-1),end)=ssv;
for i=1:no
nm=nf*(1+floor((nr-i)/no)); % number of samples in this set
ss(1+(i-1)*ni:nm+(i-1)*ni,i)=reshape(se(i:no:nr,:)',nm,1);
end
ss=sum(ss,2);
end
if nargout>1
if nr
zo.ssv=ss(end-ni*(no-1)+1:end); % save the output tail for next time
ss(end-ni*(no-1)+1:end)=[];
else
zo.ssv=ssv; %
end
zo.si=s(length(ss)+1:end); % save the tail end of the input speech signal
zo.fs=fs; % save sample frequency
zo.qq=qq; % save loval parameters
zo.qp=qp; % save estnoisem parameters
zo.ze=ze; % save state of noise estimation
zo.xu=xu;
end
if ~nargout && nr>0
ttax=(1:nr)*tinc;
ffax=(0:size(g,2)-1)*fs/nf/1000; ax=zeros(4,1);
ax(1)=subplot(223);
imagesc(ttax,ffax,20*log10(g)');
colorbar;
axis('xy');
title(sprintf('Filter Gain (dB): ta=%.2g',qq.ta));
xlabel('Time (s)');
ylabel('Frequency (kHz)');
ax(2)=subplot(222);
imagesc(ttax,ffax,10*log10(yp)');
colorbar;
axis('xy');
title('Noisy Speech (dB)');
xlabel('Time (s)');
ylabel('Frequency (kHz)');
ax(3)=subplot(224);
imagesc(ttax,ffax,10*log10(yp.*g.^2)');
colorbar;
axis('xy');
title('Enhanced Speech (dB)');
xlabel('Time (s)');
ylabel('Frequency (kHz)');
ax(4)=subplot(221);
imagesc(ttax,ffax,10*log10(dp)');
colorbar;
axis('xy');
title('Noise Estimate (dB)');
xlabel('Time (s)');
ylabel('Frequency (kHz)');
linkaxes(ax);
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -