亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? l_setox.s

?? vxworks的源代碼
?? S
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
/* l_setox.s - Motorola 68040 FP exponential routines (LIB) *//* Copyright 1991-1993 Wind River Systems, Inc. */	.data	.globl	_copyright_wind_river	.long	_copyright_wind_river/*modification history--------------------01f,12nov94,dvs  fixed clearcase conversion search/replace errors.01e,21jul93,kdl  added .text (SPR #2372).01d,23aug92,jcf  changed bxxx to jxx.01c,26may92,rrr  the tree shuffle01b,09jan92,kdl  added modification history; general cleanup.01a,15aug91,kdl  original version, from Motorola FPSP v2.0.*//*DESCRIPTION	setoxsa 3.1 12/10/90	The entry point __l_setox computes the exponential of a value.	__l_setoxd does the same except the input value is a denormalized	number.	__l_setoxm1 computes exp(X)-1, and __l_setoxm1d computes	exp(X)-1 for denormalized X.	INPUT	-----	Double-extended value in memory location pointed to by address	register a0.	OUTPUT	------	exp(X) or exp(X)-1 returned in floating-point register fp0.	ACCURACY and MONOTONICITY	-------------------------	The returned result is within 0.85 ulps in 64 significant bit, i.e.	within 0.5001 ulp to 53 bits if the result is subsequently rounded	to double precision. The result is provably monotonic in double	precision.	SPEED	-----	Two timings are measured, both in the copy-back mode. The	first one is measured when the function is invoked the first time	(so the instructions and data are not in cache), and the	second one is measured when the function is reinvoked at the same	input argument.	The program __l_setox takes approximately 210/190 cycles for input	argument X whose magnitude is less than 16380 log2, which	is the usual situation.	For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	The program __l_setoxm1 takes approximately ???/??? cycles for input	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes	approximately ???/??? cycles. For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	ALGORITHM and IMPLEMENTATION NOTES	----------------------------------	__l_setoxd	------	Step 1.	Set ans := 1.0	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.	Notes:	This will always generate one exception -- inexact.	__l_setox	-----	Step 1.	Filter out extreme cases of input argument.		1.1	If |X| >= 2^(-65), go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 16380 log(2), go to Step 2.		1.4	Go to Step 8.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 To avoid the use of floating-point comparisons, a		 compact representation of |X| is used. This format is a		 32-bit integer, the upper (more significant) 16 bits are		 the sign and biased exponent field of |X||  the lower 16		 bits are the 16 most significant fraction (including the		 explicit bit) bits of |X|. Consequently, the comparisons		 in Steps 1.1 and 1.3 can be performed by integer comparison.		 Note also that the constant 16380 log(2) used in Step 1.3		 is also in the compact form. Thus taking the branch		 to Step 2 guarantees |X| < 16380 log(2). There is no harm		 to have a small number of cases where |X| is less than,		 but close to, 16380 log(2) and the branch to Step 9 is		 taken.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)		2.2	N := round-to-nearest-integer( X * 64/log2 ).		2.3	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.4	Calculate	M = (N - J)/64|  so N = 64M + J.		2.5	Calculate the address of the stored value of 2^(J/64).		2.6	Create the value Scale = 2^M.	Notes:	The calculation in 2.2 is really performed by			Z := X * constant			N := round-to-nearest-integer(Z)		 where			constant := single-precision( 64/log 2 ).		 Using a single-precision constant avoids memory access.		 Another effect of using a single-precision "constant" is		 that the calculated value Z is			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).		 This error has to be considered later in Steps 3 and 4.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate		 the value	-log2/64	to 88 bits of accuracy.		 b) N*L1 is exact because N is no longer than 22 bits and		 L1 is no longer than 24 bits.		 c) The calculation X+N*L1 is also exact due to cancellation.		 Thus, R is practically X+N(L1+L2) to full 64 bits.		 d) It is important to estimate how large can |R| be after		 Step 3.2.			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5			X*64/log2 - N	=	f - eps*X 64/log2			X - N*log2/64	=	f*log2/64 - eps*X		 Now |X| <= 16446 log2, thus			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64					<= 0.57 log2/64.		 This bound will be used in Step 4.	Step 4.	Approximate exp(R)-1 by a polynomial			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A4 and A5		 are single precision|  A2 and A3 are double precision.		 b) Even with the restrictions above,			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.		 Note that 0.0062 is slightly bigger than 0.57 log2/64.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexities			p = [ R + R*S*(A2 + S*A4) ]	+				[ S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by				ans := T + ( T*p + t)		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will give much		 more accurate computation of the function EXPM1.	Step 6.	Reconstruction of exp(X)			exp(X) = 2^M * 2^(J/64) * exp(R).		6.1	If AdjFlag = 0, go to 6.3		6.2	ans := ans * AdjScale		6.3	Restore the user fpcr		6.4	Return ans := ans * Scale. Exit.	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will		 neither overflow nor underflow. If AdjFlag = 1, that		 means that			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.		 Hence, exp(X) may overflow or underflow or neither.		 When that is the case, AdjScale = 2^(M1) where M1 is		 approximately M. Thus 6.2 will never cause over/underflow.		 Possible exception in 6.4 is overflow or underflow.		 The inexact exception is not generated in 6.4. Although		 one can argue that the inexact flag should always be		 raised, to simulate that exception cost to much than the		 flag is worth in practical uses.	Step 7.	Return 1 + X.		7.1	ans := X		7.2	Restore user fpcr.		7.3	Return ans := 1 + ans. Exit	Notes:	For non-zero X, the inexact exception will always be		 raised by 7.3. That is the only exception raised by 7.3.		 Note also that we use the FMOVEM instruction to move X		 in Step 7.1 to avoid unnecessary trapping. (Although		 the FMOVEM may not seem relevant since X is normalized,		 the precaution will be useful in the library version of		 this code where the separate entry for denormalized inputs		 will be done away with.)	Step 8.	Handle exp(X) where |X| >= 16380log2.		8.1	If |X| > 16480 log2, go to Step 9.		(mimic 2.2 - 2.6)		8.2	N := round-to-integer( X * 64/log2 )		8.3	Calculate J = N mod 64, J = 0,1,...,63		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.		8.5	Calculate the address of the stored value 2^(J/64).		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.		8.7	Go to Step 3.	Notes:	Refer to notes for 2.2 - 2.6.	Step 9.	Handle exp(X), |X| > 16480 log2.		9.1	If X < 0, go to 9.3		9.2	ans := Huge, go to 9.4		9.3	ans := Tiny.		9.4	Restore user fpcr.		9.5	Return ans := ans * ans. Exit.	Notes:	Exp(X) will surely overflow or underflow, depending on		 X's sign. "Huge" and "Tiny" are respectively large/tiny		 extended-precision numbers whose square over/underflow		 with an inexact result. Thus, 9.5 always raises the		 inexact together with either overflow or underflow.	__l_setoxm1d	--------	Step 1.	Set ans := 0	Step 2.	Return	ans := X + ans. Exit.	Notes:	This will return X with the appropriate rounding		 precision prescribed by the user fpcr.	__l_setoxm1	-------	Step 1.	Check |X|		1.1	If |X| >= 1/4, go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 70 log(2), go to Step 2.		1.4	Go to Step 10.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 However, it is conceivable |X| can be small very often		 because EXPM1 is intended to evaluate exp(X)-1 accurately		 when |X| is small. For further details on the comparisons,		 see the notes on Step 1 of __l_setox.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	N := round-to-nearest-integer( X * 64/log2 ).		2.2	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.3	Calculate	M = (N - J)/64|  so N = 64M + J.		2.4	Calculate the address of the stored value of 2^(J/64).		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M).	Notes:	See the notes on Step 2 of __l_setox.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	Applying the analysis of Step 3 of __l_setox in this case		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in		 this case).	Step 4.	Approximate exp(R)-1 by a polynomial			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A5 and A6		 are single precision|  A2, A3 and A4 are double precision.		 b) Even with the restriction above,			|p - (exp(R)-1)| <	|R| * 2^(-72.7)		 for all |R| <= 0.0055.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexity			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+				[ R + S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*p by				p := T*p		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will be exploited		 in Step 6 below. The total relative error in p is no		 bigger than 2^(-67.7) compared to the final result.	Step 6.	Reconstruction of exp(X)-1			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).		6.1	If M <= 63, go to Step 6.3.		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6		6.3	If M >= -3, go to 6.5.		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6		6.5	ans := (T + OnebySc) + (p + t).		6.6	Restore user fpcr.		6.7	Return ans := Sc * ans. Exit.	Notes:	The various arrangements of the expressions give accurate		 evaluations.	Step 7.	exp(X)-1 for |X| < 1/4.		7.1	If |X| >= 2^(-65), go to Step 9.		7.2	Go to Step 8.	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).		8.1	If |X| < 2^(-16312), goto 8.3		8.2	Restore fpcr|  return ans := X - 2^(-16382). Exit.		8.3	X := X * 2^(140).		8.4	Restore fpcr|  ans := ans - 2^(-16382).		 Return ans := ans*2^(140). Exit	Notes:	The idea is to return "X - tiny" under the user		 precision and rounding modes. To avoid unnecessary		 inefficiency, we stay away from denormalized numbers the		 best we can. For |X| >= 2^(-16312), the straightforward		 8.2 generates the inexact exception as the case warrants.	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial			p = X + X*X*(B1 + X*(B2 + |... + X*B12))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: B1 (which is 1/2), B9 to B12		 are single precision|  B3 to B8 are double precision|  and		 B2 is double extended.		 b) Even with the restriction above,			|p - (exp(X)-1)| < |X| 2^(-70.6)		 for all |X| <= 0.251.		 Note that 0.251 is slightly bigger than 1/4.		 c) To fully preserve accuracy, the polynomial is computed		 as	X + ( S*B1 +	Q ) where S = X*X and			Q	=	X*S*(B2 + X*(B3 + |... + X*B12))		 d) To fully utilize the pipeline, Q is separated into		 two independent pieces of roughly equal complexity			Q = [ X*S*(B2 + S*(B4 + |... + S*B12)) ] +				[ S*S*(B3 + S*(B5 + |... + S*B11)) ]	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2.		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical		 purposes. Therefore, go to Step 1 of __l_setox.		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.		 ans := -1		 Restore user fpcr		 Return ans := ans + 2^(-126). Exit.	Notes:	10.2 will always create an inexact and return -1 + tiny		 in the user rounding precision and mode.		Copyright (C) Motorola, Inc. 1990			All Rights Reserved	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA	The copyright notice above does not evidence any	actual or intended publication of such source code.__l_setox	IDNT	2,1 Motorola 040 Floating Point Software Package	section	8NOMANUAL*/#include "fpsp040L.h"L2:	.long	0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000EXPA3:	.long	0x3FA55555,0x55554431EXPA2:	.long	0x3FC55555,0x55554018HUGE:	.long	0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000TINY:	.long	0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000EM1A4:	.long	0x3F811111,0x11174385EM1A3:	.long	0x3FA55555,0x55554F5AEM1A2:	.long	0x3FC55555,0x55555555,0x00000000,0x00000000EM1B8:	.long	0x3EC71DE3,0xA5774682EM1B7:	.long	0x3EFA01A0,0x19D7CB68EM1B6:	.long	0x3F2A01A0,0x1A019DF3EM1B5:	.long	0x3F56C16C,0x16C170E2EM1B4:	.long	0x3F811111,0x11111111EM1B3:	.long	0x3FA55555,0x55555555EM1B2:	.long	0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB	.long	0x00000000TWO140:	.long	0x48B00000,0x00000000TWON140:	.long	0x37300000,0x00000000EXPTBL:	.long	0x3FFF0000,0x80000000,0x00000000,0x00000000	.long	0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B	.long	0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9	.long	0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369	.long	0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C	.long	0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F	.long	0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729	.long	0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF	.long	0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF	.long	0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA	.long	0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051	.long	0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029	.long	0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494	.long	0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0	.long	0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D	.long	0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537	.long	0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD	.long	0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087	.long	0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818	.long	0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D	.long	0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890	.long	0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C	.long	0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05	.long	0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126	.long	0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140	.long	0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA	.long	0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A	.long	0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC	.long	0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC	.long	0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610	.long	0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90	.long	0x3FFF0000,0xB311C412,0xA9112488,0x201F678A	.long	0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13	.long	0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30	.long	0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC	.long	0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6	.long	0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70	.long	0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518	.long	0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41	.long	0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B	.long	0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568	.long	0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E	.long	0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03	.long	0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D	.long	0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4	.long	0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C	.long	0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9	.long	0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21	.long	0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F	.long	0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F	.long	0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美丝袜丝nylons| 五月婷婷欧美视频| 国产精品系列在线| 337p日本欧洲亚洲大胆精品| 日韩你懂的在线观看| 91精品久久久久久久久99蜜臂| 欧美午夜电影网| 欧美军同video69gay| 欧美精品18+| 在线综合亚洲欧美在线视频| 91精品国产色综合久久不卡蜜臀| 欧美一区二区精品在线| 精品久久国产97色综合| 久久人人爽爽爽人久久久| 国产亚洲视频系列| 国产精品久久久久久妇女6080| 亚洲欧美一区二区三区极速播放| 一区二区三区高清在线| 亚洲va欧美va人人爽| 美脚の诱脚舐め脚责91| 国产ts人妖一区二区| 北条麻妃一区二区三区| 91浏览器打开| 欧美日本一道本| 精品福利一二区| 欧美国产日韩在线观看| 亚洲另类在线制服丝袜| 日日夜夜精品视频免费| 精品亚洲porn| voyeur盗摄精品| 精品视频在线视频| 精品国产亚洲在线| 亚洲三级在线看| 免费观看91视频大全| 国产成人免费视频网站| 一本一道久久a久久精品综合蜜臀| 欧美群妇大交群中文字幕| 欧美mv和日韩mv的网站| 国产欧美日韩三区| 亚洲国产美国国产综合一区二区| 另类小说图片综合网| 成人性色生活片| 欧美日韩1区2区| 欧美激情在线一区二区三区| 亚洲一区二区三区影院| 国产成人综合在线观看| 日本韩国精品一区二区在线观看| 欧美一区二区三区在线电影| 欧美激情一区二区| 五月婷婷另类国产| 成人app在线观看| 日韩一级片网站| 亚洲欧美激情插 | 国模套图日韩精品一区二区| av午夜精品一区二区三区| 7777精品伊人久久久大香线蕉超级流畅| 亚洲精品一区在线观看| 一区二区欧美国产| 国产suv精品一区二区6| 6080yy午夜一二三区久久| 中文字幕乱码亚洲精品一区 | 成人精品鲁一区一区二区| 欧美日韩国产高清一区| 中文字幕永久在线不卡| 久久精品国产亚洲5555| 欧美亚洲动漫精品| 国产精品久久久久aaaa樱花| 久久aⅴ国产欧美74aaa| 欧美午夜影院一区| 亚洲欧洲日韩av| 国产另类ts人妖一区二区| 欧美日韩免费在线视频| 亚洲天天做日日做天天谢日日欢 | 欧美性受极品xxxx喷水| 久久精品夜色噜噜亚洲a∨| 天堂久久一区二区三区| 91蜜桃网址入口| 欧美精彩视频一区二区三区| 狂野欧美性猛交blacked| 欧美另类高清zo欧美| 最新久久zyz资源站| 国产乱人伦偷精品视频免下载| 欧美日韩亚洲国产综合| 亚洲女同女同女同女同女同69| 国产精品 欧美精品| 欧美精品一区二区三区久久久| 五月婷婷激情综合网| 在线免费观看一区| 国产精品黄色在线观看| 成人激情黄色小说| 国产丝袜美腿一区二区三区| 麻豆精品精品国产自在97香蕉| 欧美日韩在线播| 亚洲一区二区三区四区五区中文 | 国产农村妇女精品| 国产一区二区三区四| 日韩精品一区二区三区在线观看| 日本网站在线观看一区二区三区 | 26uuu国产日韩综合| 日韩不卡一二三区| 91精品国产全国免费观看| 青椒成人免费视频| 91麻豆精品国产91久久久更新时间| 亚洲综合清纯丝袜自拍| 欧美无乱码久久久免费午夜一区| 亚洲午夜久久久久| 欧美色涩在线第一页| 亚洲成人免费电影| 91.xcao| 日本vs亚洲vs韩国一区三区 | 久久久国产精品麻豆| 国产一区二区看久久| 国产丝袜美腿一区二区三区| 国产凹凸在线观看一区二区| 国产精品天美传媒沈樵| av欧美精品.com| 亚洲欧美激情在线| 欧美日韩国产乱码电影| 日韩成人一区二区| 337p日本欧洲亚洲大胆色噜噜| 国产福利一区二区三区| 中文字幕综合网| 欧美综合欧美视频| 日韩成人精品在线| 国产亚洲成aⅴ人片在线观看| 国产成人午夜精品5599| 1024亚洲合集| 欧美日韩一级视频| 狠狠色丁香久久婷婷综合_中| 欧美激情一区二区三区全黄 | 亚洲最新在线观看| 欧美精品一二三| 激情av综合网| 中文字幕中文字幕在线一区| 欧美中文字幕一区二区三区| 日韩电影在线一区二区| 国产女人水真多18毛片18精品视频| 91亚洲精品久久久蜜桃| 日本伊人色综合网| 中文字幕中文乱码欧美一区二区| 欧美在线观看一区二区| 国产做a爰片久久毛片 | 色8久久精品久久久久久蜜 | 色成年激情久久综合| 婷婷中文字幕一区三区| 国产亚洲精品bt天堂精选| 在线观看亚洲精品| 国产美女精品在线| 亚洲尤物在线视频观看| 久久久噜噜噜久噜久久综合| 色婷婷综合久久久久中文 | 色婷婷亚洲综合| 久久99国产精品麻豆| 亚洲视频一区二区在线| 日韩视频免费观看高清完整版 | 不卡的av网站| 奇米影视在线99精品| 亚洲人成伊人成综合网小说| 日韩一区二区中文字幕| 91免费版在线| 国产久卡久卡久卡久卡视频精品| 亚洲一区二区三区四区在线 | 国产精品99久久久久久宅男| 亚洲在线视频网站| 久久精品一区二区三区av| 欧美精品日日鲁夜夜添| 色综合欧美在线| 国产一区91精品张津瑜| 日日夜夜一区二区| 夜夜精品浪潮av一区二区三区| 久久综合九色综合97婷婷女人| 欧美日韩免费观看一区二区三区| gogogo免费视频观看亚洲一| 久久99国内精品| 日韩综合小视频| 一区二区三区在线看| 中文字幕精品三区| 久久影视一区二区| 日韩一区二区视频在线观看| 在线亚洲高清视频| 成人v精品蜜桃久久一区| 国产一区不卡在线| 久久99国产精品久久| 视频在线观看国产精品| 一个色综合av| 亚洲精品高清在线| 中文字幕日本不卡| 国产欧美日本一区视频| 精品福利av导航| 精品黑人一区二区三区久久| 91精品蜜臀在线一区尤物| 欧美在线免费观看亚洲| 色婷婷av一区二区三区大白胸| 成人毛片老司机大片| 国产精品小仙女| 高清视频一区二区| 成人爽a毛片一区二区免费| 国产成人精品一区二| 国产精选一区二区三区| 国产一区二区看久久|