亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? l_setox.s

?? vxworks的源代碼
?? S
?? 第 1 頁 / 共 2 頁
字號:
/* l_setox.s - Motorola 68040 FP exponential routines (LIB) *//* Copyright 1991-1993 Wind River Systems, Inc. */	.data	.globl	_copyright_wind_river	.long	_copyright_wind_river/*modification history--------------------01f,12nov94,dvs  fixed clearcase conversion search/replace errors.01e,21jul93,kdl  added .text (SPR #2372).01d,23aug92,jcf  changed bxxx to jxx.01c,26may92,rrr  the tree shuffle01b,09jan92,kdl  added modification history; general cleanup.01a,15aug91,kdl  original version, from Motorola FPSP v2.0.*//*DESCRIPTION	setoxsa 3.1 12/10/90	The entry point __l_setox computes the exponential of a value.	__l_setoxd does the same except the input value is a denormalized	number.	__l_setoxm1 computes exp(X)-1, and __l_setoxm1d computes	exp(X)-1 for denormalized X.	INPUT	-----	Double-extended value in memory location pointed to by address	register a0.	OUTPUT	------	exp(X) or exp(X)-1 returned in floating-point register fp0.	ACCURACY and MONOTONICITY	-------------------------	The returned result is within 0.85 ulps in 64 significant bit, i.e.	within 0.5001 ulp to 53 bits if the result is subsequently rounded	to double precision. The result is provably monotonic in double	precision.	SPEED	-----	Two timings are measured, both in the copy-back mode. The	first one is measured when the function is invoked the first time	(so the instructions and data are not in cache), and the	second one is measured when the function is reinvoked at the same	input argument.	The program __l_setox takes approximately 210/190 cycles for input	argument X whose magnitude is less than 16380 log2, which	is the usual situation.	For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	The program __l_setoxm1 takes approximately ???/??? cycles for input	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes	approximately ???/??? cycles. For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	ALGORITHM and IMPLEMENTATION NOTES	----------------------------------	__l_setoxd	------	Step 1.	Set ans := 1.0	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.	Notes:	This will always generate one exception -- inexact.	__l_setox	-----	Step 1.	Filter out extreme cases of input argument.		1.1	If |X| >= 2^(-65), go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 16380 log(2), go to Step 2.		1.4	Go to Step 8.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 To avoid the use of floating-point comparisons, a		 compact representation of |X| is used. This format is a		 32-bit integer, the upper (more significant) 16 bits are		 the sign and biased exponent field of |X||  the lower 16		 bits are the 16 most significant fraction (including the		 explicit bit) bits of |X|. Consequently, the comparisons		 in Steps 1.1 and 1.3 can be performed by integer comparison.		 Note also that the constant 16380 log(2) used in Step 1.3		 is also in the compact form. Thus taking the branch		 to Step 2 guarantees |X| < 16380 log(2). There is no harm		 to have a small number of cases where |X| is less than,		 but close to, 16380 log(2) and the branch to Step 9 is		 taken.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)		2.2	N := round-to-nearest-integer( X * 64/log2 ).		2.3	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.4	Calculate	M = (N - J)/64|  so N = 64M + J.		2.5	Calculate the address of the stored value of 2^(J/64).		2.6	Create the value Scale = 2^M.	Notes:	The calculation in 2.2 is really performed by			Z := X * constant			N := round-to-nearest-integer(Z)		 where			constant := single-precision( 64/log 2 ).		 Using a single-precision constant avoids memory access.		 Another effect of using a single-precision "constant" is		 that the calculated value Z is			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).		 This error has to be considered later in Steps 3 and 4.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate		 the value	-log2/64	to 88 bits of accuracy.		 b) N*L1 is exact because N is no longer than 22 bits and		 L1 is no longer than 24 bits.		 c) The calculation X+N*L1 is also exact due to cancellation.		 Thus, R is practically X+N(L1+L2) to full 64 bits.		 d) It is important to estimate how large can |R| be after		 Step 3.2.			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5			X*64/log2 - N	=	f - eps*X 64/log2			X - N*log2/64	=	f*log2/64 - eps*X		 Now |X| <= 16446 log2, thus			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64					<= 0.57 log2/64.		 This bound will be used in Step 4.	Step 4.	Approximate exp(R)-1 by a polynomial			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A4 and A5		 are single precision|  A2 and A3 are double precision.		 b) Even with the restrictions above,			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.		 Note that 0.0062 is slightly bigger than 0.57 log2/64.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexities			p = [ R + R*S*(A2 + S*A4) ]	+				[ S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by				ans := T + ( T*p + t)		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will give much		 more accurate computation of the function EXPM1.	Step 6.	Reconstruction of exp(X)			exp(X) = 2^M * 2^(J/64) * exp(R).		6.1	If AdjFlag = 0, go to 6.3		6.2	ans := ans * AdjScale		6.3	Restore the user fpcr		6.4	Return ans := ans * Scale. Exit.	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will		 neither overflow nor underflow. If AdjFlag = 1, that		 means that			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.		 Hence, exp(X) may overflow or underflow or neither.		 When that is the case, AdjScale = 2^(M1) where M1 is		 approximately M. Thus 6.2 will never cause over/underflow.		 Possible exception in 6.4 is overflow or underflow.		 The inexact exception is not generated in 6.4. Although		 one can argue that the inexact flag should always be		 raised, to simulate that exception cost to much than the		 flag is worth in practical uses.	Step 7.	Return 1 + X.		7.1	ans := X		7.2	Restore user fpcr.		7.3	Return ans := 1 + ans. Exit	Notes:	For non-zero X, the inexact exception will always be		 raised by 7.3. That is the only exception raised by 7.3.		 Note also that we use the FMOVEM instruction to move X		 in Step 7.1 to avoid unnecessary trapping. (Although		 the FMOVEM may not seem relevant since X is normalized,		 the precaution will be useful in the library version of		 this code where the separate entry for denormalized inputs		 will be done away with.)	Step 8.	Handle exp(X) where |X| >= 16380log2.		8.1	If |X| > 16480 log2, go to Step 9.		(mimic 2.2 - 2.6)		8.2	N := round-to-integer( X * 64/log2 )		8.3	Calculate J = N mod 64, J = 0,1,...,63		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.		8.5	Calculate the address of the stored value 2^(J/64).		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.		8.7	Go to Step 3.	Notes:	Refer to notes for 2.2 - 2.6.	Step 9.	Handle exp(X), |X| > 16480 log2.		9.1	If X < 0, go to 9.3		9.2	ans := Huge, go to 9.4		9.3	ans := Tiny.		9.4	Restore user fpcr.		9.5	Return ans := ans * ans. Exit.	Notes:	Exp(X) will surely overflow or underflow, depending on		 X's sign. "Huge" and "Tiny" are respectively large/tiny		 extended-precision numbers whose square over/underflow		 with an inexact result. Thus, 9.5 always raises the		 inexact together with either overflow or underflow.	__l_setoxm1d	--------	Step 1.	Set ans := 0	Step 2.	Return	ans := X + ans. Exit.	Notes:	This will return X with the appropriate rounding		 precision prescribed by the user fpcr.	__l_setoxm1	-------	Step 1.	Check |X|		1.1	If |X| >= 1/4, go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 70 log(2), go to Step 2.		1.4	Go to Step 10.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 However, it is conceivable |X| can be small very often		 because EXPM1 is intended to evaluate exp(X)-1 accurately		 when |X| is small. For further details on the comparisons,		 see the notes on Step 1 of __l_setox.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	N := round-to-nearest-integer( X * 64/log2 ).		2.2	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.3	Calculate	M = (N - J)/64|  so N = 64M + J.		2.4	Calculate the address of the stored value of 2^(J/64).		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M).	Notes:	See the notes on Step 2 of __l_setox.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	Applying the analysis of Step 3 of __l_setox in this case		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in		 this case).	Step 4.	Approximate exp(R)-1 by a polynomial			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A5 and A6		 are single precision|  A2, A3 and A4 are double precision.		 b) Even with the restriction above,			|p - (exp(R)-1)| <	|R| * 2^(-72.7)		 for all |R| <= 0.0055.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexity			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+				[ R + S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*p by				p := T*p		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will be exploited		 in Step 6 below. The total relative error in p is no		 bigger than 2^(-67.7) compared to the final result.	Step 6.	Reconstruction of exp(X)-1			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).		6.1	If M <= 63, go to Step 6.3.		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6		6.3	If M >= -3, go to 6.5.		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6		6.5	ans := (T + OnebySc) + (p + t).		6.6	Restore user fpcr.		6.7	Return ans := Sc * ans. Exit.	Notes:	The various arrangements of the expressions give accurate		 evaluations.	Step 7.	exp(X)-1 for |X| < 1/4.		7.1	If |X| >= 2^(-65), go to Step 9.		7.2	Go to Step 8.	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).		8.1	If |X| < 2^(-16312), goto 8.3		8.2	Restore fpcr|  return ans := X - 2^(-16382). Exit.		8.3	X := X * 2^(140).		8.4	Restore fpcr|  ans := ans - 2^(-16382).		 Return ans := ans*2^(140). Exit	Notes:	The idea is to return "X - tiny" under the user		 precision and rounding modes. To avoid unnecessary		 inefficiency, we stay away from denormalized numbers the		 best we can. For |X| >= 2^(-16312), the straightforward		 8.2 generates the inexact exception as the case warrants.	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial			p = X + X*X*(B1 + X*(B2 + |... + X*B12))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: B1 (which is 1/2), B9 to B12		 are single precision|  B3 to B8 are double precision|  and		 B2 is double extended.		 b) Even with the restriction above,			|p - (exp(X)-1)| < |X| 2^(-70.6)		 for all |X| <= 0.251.		 Note that 0.251 is slightly bigger than 1/4.		 c) To fully preserve accuracy, the polynomial is computed		 as	X + ( S*B1 +	Q ) where S = X*X and			Q	=	X*S*(B2 + X*(B3 + |... + X*B12))		 d) To fully utilize the pipeline, Q is separated into		 two independent pieces of roughly equal complexity			Q = [ X*S*(B2 + S*(B4 + |... + S*B12)) ] +				[ S*S*(B3 + S*(B5 + |... + S*B11)) ]	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2.		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical		 purposes. Therefore, go to Step 1 of __l_setox.		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.		 ans := -1		 Restore user fpcr		 Return ans := ans + 2^(-126). Exit.	Notes:	10.2 will always create an inexact and return -1 + tiny		 in the user rounding precision and mode.		Copyright (C) Motorola, Inc. 1990			All Rights Reserved	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA	The copyright notice above does not evidence any	actual or intended publication of such source code.__l_setox	IDNT	2,1 Motorola 040 Floating Point Software Package	section	8NOMANUAL*/#include "fpsp040L.h"L2:	.long	0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000EXPA3:	.long	0x3FA55555,0x55554431EXPA2:	.long	0x3FC55555,0x55554018HUGE:	.long	0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000TINY:	.long	0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000EM1A4:	.long	0x3F811111,0x11174385EM1A3:	.long	0x3FA55555,0x55554F5AEM1A2:	.long	0x3FC55555,0x55555555,0x00000000,0x00000000EM1B8:	.long	0x3EC71DE3,0xA5774682EM1B7:	.long	0x3EFA01A0,0x19D7CB68EM1B6:	.long	0x3F2A01A0,0x1A019DF3EM1B5:	.long	0x3F56C16C,0x16C170E2EM1B4:	.long	0x3F811111,0x11111111EM1B3:	.long	0x3FA55555,0x55555555EM1B2:	.long	0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB	.long	0x00000000TWO140:	.long	0x48B00000,0x00000000TWON140:	.long	0x37300000,0x00000000EXPTBL:	.long	0x3FFF0000,0x80000000,0x00000000,0x00000000	.long	0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B	.long	0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9	.long	0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369	.long	0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C	.long	0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F	.long	0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729	.long	0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF	.long	0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF	.long	0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA	.long	0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051	.long	0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029	.long	0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494	.long	0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0	.long	0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D	.long	0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537	.long	0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD	.long	0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087	.long	0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818	.long	0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D	.long	0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890	.long	0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C	.long	0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05	.long	0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126	.long	0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140	.long	0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA	.long	0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A	.long	0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC	.long	0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC	.long	0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610	.long	0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90	.long	0x3FFF0000,0xB311C412,0xA9112488,0x201F678A	.long	0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13	.long	0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30	.long	0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC	.long	0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6	.long	0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70	.long	0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518	.long	0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41	.long	0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B	.long	0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568	.long	0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E	.long	0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03	.long	0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D	.long	0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4	.long	0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C	.long	0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9	.long	0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21	.long	0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F	.long	0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F	.long	0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美性色黄大片手机版| 亚洲欧美偷拍卡通变态| 1区2区3区国产精品| 日本v片在线高清不卡在线观看| 国产成人亚洲综合a∨婷婷| 欧美在线观看一区| 国产精品久久久久久久久久免费看| 日本欧美在线观看| 色综合色狠狠天天综合色| 久久视频一区二区| 午夜精品一区在线观看| 在线视频一区二区免费| 国产精品免费丝袜| 国产aⅴ精品一区二区三区色成熟| 欧美亚男人的天堂| 亚洲免费视频成人| 成人午夜视频网站| 欧美激情一区在线观看| 国产一区二区主播在线| 精品久久人人做人人爱| 免费看黄色91| 日韩精品中文字幕在线不卡尤物| 午夜精品久久久久影视| 91猫先生在线| 一区二区三区中文字幕电影| 成人app网站| 国产精品免费aⅴ片在线观看| 精品一区二区三区在线观看| 欧美一区二区日韩| 美腿丝袜亚洲综合| 日韩免费电影网站| 九九精品一区二区| 国产亚洲一二三区| 处破女av一区二区| 亚洲日本一区二区三区| 色综合久久88色综合天天6| 一区在线观看视频| 色av成人天堂桃色av| 亚洲黄网站在线观看| 欧美日韩精品欧美日韩精品一 | 666欧美在线视频| 亚洲成人三级小说| 日韩一级高清毛片| 国产高清视频一区| 亚洲精品日韩综合观看成人91| 色偷偷久久一区二区三区| 亚洲国产sm捆绑调教视频 | 色狠狠综合天天综合综合| 亚洲午夜成aⅴ人片| 日韩写真欧美这视频| 日本v片在线高清不卡在线观看| 精品国产一区二区精华| 国产成人免费视频网站| 亚洲欧美日韩在线| 欧美一级片免费看| 国产成人无遮挡在线视频| 亚洲欧洲一区二区三区| 欧美日韩三级一区二区| 国产在线国偷精品免费看| 国产精品视频你懂的| 欧美性大战xxxxx久久久| 久久99精品久久久久久 | 精品国产青草久久久久福利| 国产精品亚洲综合一区在线观看| 亚洲天堂免费看| 欧美一区二区三区免费大片| 成人性生交大合| 亚洲成人黄色影院| 国产精品私人影院| 欧美日韩国产一级片| 国产激情91久久精品导航| 亚洲一区在线播放| 国产欧美日韩不卡| 欧美巨大另类极品videosbest | 国产**成人网毛片九色| 亚洲一区二区三区四区在线免费观看| 欧美大片国产精品| 色哟哟一区二区在线观看| 开心九九激情九九欧美日韩精美视频电影 | 欧美一区二区精美| 91在线观看美女| 国产一区二区主播在线| 亚洲成a人v欧美综合天堂| 国产亚洲欧洲997久久综合| 欧美三级在线视频| 99久久精品久久久久久清纯| 精品午夜久久福利影院| 午夜欧美2019年伦理| 亚洲欧洲精品成人久久奇米网| 欧美大片在线观看| 欧美剧情片在线观看| 色婷婷av久久久久久久| 粉嫩av一区二区三区| 久久超碰97人人做人人爱| 亚洲二区视频在线| 中文字幕亚洲不卡| 国产欧美日韩久久| 久久日一线二线三线suv| 91精品欧美一区二区三区综合在| 91一区二区在线| 99久久久无码国产精品| 东方aⅴ免费观看久久av| 国内精品写真在线观看| 久久精品国内一区二区三区| 青青国产91久久久久久| 日韩国产在线一| 一个色妞综合视频在线观看| 亚洲视频在线一区| 亚洲天天做日日做天天谢日日欢| 中文字幕中文字幕一区| 国产精品国产三级国产三级人妇| 久久久久国产成人精品亚洲午夜| 精品国产乱码久久久久久久| 精品国产91九色蝌蚪| 欧美va天堂va视频va在线| 欧美日韩成人一区二区| 欧美一区二区三区在线视频| 制服丝袜激情欧洲亚洲| 欧美一区二区三区四区高清| 日韩欧美一区电影| 久久综合九色综合97婷婷 | 精品一区二区三区影院在线午夜| 日本午夜精品视频在线观看| 蜜臀久久99精品久久久画质超高清 | 欧美另类z0zxhd电影| 欧洲精品视频在线观看| 在线综合亚洲欧美在线视频| 日韩欧美国产一区在线观看| 精品国免费一区二区三区| 国产日产欧美一区二区视频| 亚洲天堂网中文字| 视频在线观看一区二区三区| 精品在线亚洲视频| 国产成人免费在线| 在线欧美一区二区| 日韩视频在线永久播放| 国产视频911| 亚洲欧洲综合另类| 日韩精品成人一区二区三区| 韩国三级电影一区二区| 播五月开心婷婷综合| 欧美视频一区二区| 欧美大胆一级视频| 中文字幕制服丝袜成人av| 亚洲狠狠爱一区二区三区| 久久国产日韩欧美精品| 成a人片国产精品| 911精品产国品一二三产区| 国产亚洲欧美日韩在线一区| 亚洲精品v日韩精品| 麻豆精品一区二区三区| 91小视频在线观看| 日韩视频一区在线观看| 国产精品美女久久福利网站| 亚洲成a人在线观看| 国产成人高清视频| 欧美精品在线视频| 精品一区二区国语对白| 91丨九色丨尤物| 26uuu另类欧美| 亚洲一级二级在线| 成人午夜电影久久影院| 91精品国产一区二区| 亚洲色图在线视频| 国产一区999| 欧美一级夜夜爽| 一区二区三区中文免费| 国产高清精品网站| 欧美一区二区精品在线| 亚洲综合色自拍一区| av电影一区二区| 久久欧美一区二区| 日本不卡中文字幕| 在线免费不卡电影| 亚洲日本va在线观看| 国产精品夜夜嗨| 精品国产亚洲在线| 日韩av在线免费观看不卡| 日本丰满少妇一区二区三区| 国产色产综合色产在线视频| 青娱乐精品视频| 51午夜精品国产| 亚洲成a人在线观看| 欧美午夜精品久久久久久超碰| 国产精品色哟哟| 国产风韵犹存在线视精品| 日韩欧美亚洲国产精品字幕久久久| 亚洲国产视频网站| 欧美专区亚洲专区| 亚洲精品高清在线观看| 色综合久久久久综合| 最新中文字幕一区二区三区| 成人深夜在线观看| 欧美韩国日本综合| 不卡av免费在线观看| 国产精品麻豆欧美日韩ww| 岛国一区二区在线观看| 国产精品女同一区二区三区| 不卡影院免费观看| 亚洲欧洲99久久|