亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? dynamic.html

?? 粒子濾波
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"><html> <head><title>Bayesian inference in dynamic models -- an overview</title></head><body><h1><center>Bayesian inference in dynamic models -- an overview</center></h1><h3><center>by <a href="/~minka/">Tom Minka</a></center></h3><p> The following algorithms all try to infer the hidden state of a dynamicmodel from measurements.  The input is a dynamic model and a measurementsequence and the output is an approximate posterior distribution over thehidden state at one or many times.  Only discrete-time models are discussedhere.  <p>Inferring only the most recent hidden state is known as <b>filtering</b>;inferring past states is known as <b>smoothing</b>.Most filtering methods are <b>on-line</b>, which means they process each measurement exactly once, after which it can be discarded.This allows them to operate with a fixed amount of memory.The opposite of <b>on-line</b> is <b>off-line</b> or <b>batch</b>.There are standard ways to turn an on-line filtering algorithm into a batch filtering or smoothing algorithm.Therefore, the overview is divided into two parts: on-line filtering andbatch filtering/smoothing.<p>Some of these algorithms are general algorithms for approximate Bayesianinference and others are specialized for dynamic models.  With thedescription of each algorithm is a partial list of references.  I'veincluded more references for algorithms which are lesswell-known.  <p>Some related pages on the web:<ul><li><a href="http://www.cs.berkeley.edu/~murphyk/Bayes/kalman.html">KevinMurphy's Kalman filter toolbox</a></ul><hr><h2>On-line filtering algorithms</h2>The algorithms are grouped according to how they represent the posteriordistribution over the hidden state (their <b>belief</b>).<hr><h2>Gaussian belief</h2>The following algorithms use a multivariate Gaussian for their belief.  Infact, most of them are more general than this---they could use anyexponential family as their belief.<p><dl><dt><b>Kalman filter</b><dd>The Kalman filter only applies to models with Gaussian noise, linearstate equations, and linear measurement equations, i.e.<pre>s_t = A s_(t-1) + noisex_t = C s_t + noise</pre>For these models the state posterior really is Gaussian, and the Kalmanfilter is exact.<ul><li><a href="http://www.cs.unc.edu/~welch/kalman/">The Kalman filter</a><li><ahref="http://vismod.media.mit.edu/tech-reports/TR-531-ABSTRACT.html">"FromHidden Markov Models to Linear Dynamical Systems"</a>, T. Minka, 1998</ul></dd><p><dt><b>Extended Kalman filter</b><dd>The Extended Kalman filter applies to models with Gaussian noise.The state and measurement equations are linearized by a Taylor expansionabout the current state estimate.  The noise variance in the equations isnot changed, i.e. the additional error due to linearization is not modeled.  After linearization, the Kalman filter is applied.<ul><li>"Stochastic models, estimation and control", Peter S. Maybeck,Volume 2, Chapter 12, 1982.<li>"A linear approximation method for probabilistic inference",Ross Shachter, UAI'1990.</ul></dd><p><dt><b>Bottleneck filter</b><dd>This algorithm applies to any type of measurement equation.The measurement equation is rewritten in terms of an intermediatebottleneck variable <kbd>b_t</kbd>, such that <kbd>p(x_t|b_t)</kbd> issimple while <kbd>p(b_t|s_t)</kbd> may be complicated.  At each time step,the Gaussian belief on <kbd>s_t</kbd> is converted into a Gaussian beliefon <kbd>b_t</kbd> (usually involving approximations), <kbd>b_t</kbd> isupdated exactly from <kbd>x_t</kbd> (since <kbd>p(x_t|b_t)</kbd> issimple), and the new Gaussian belief on <kbd>b_t</kbd> is converted back toa Gaussian belief on <kbd>s_t</kbd>.  ("Bottleneck" is my own terminology.  In the West paper below, theyused Gamma distributions.)<ul><li>"Dynamic Generalized Linear Models and Bayesian Forecasting,"M. West, P. J. Harrison, &amp; H. S. Migon, J Am Stat Assoc 80:73-97, 1985.</ul></dd><p><dt><b>Linear-update filter</b>a.k.a. linear-regression filter or "statistical linearization" filter<dd>This algorithm applies to any type of measurement equation.The measurement equation is converted into a linear-Gaussian equationby regressing the observation onto the state.The result is a Kalman filter whose Kalman gain is<kbd>cov(state,measurement)/var(measurement)</kbd>.Note that the regression is done without reference to the actual measurement.I call it "linear-update" because the update to the state is always a linearfunction of the measurement.A variety of approximations have been proposed when<kbd>cov(state,measurement)</kbd>is not available analytically.  The <b>unscented filter</b>,<b>central difference filter</b>, and <b>divided difference filter</b> arefilters of this type.<ul><li>"Stochastic models, estimation and control", Peter S. Maybeck,Volume 2, Chapter 12, 1982.<li><a href="http://citeseer.ist.psu.edu/457152.html">"Kalman Filters for nonlinear systems: a comparison of performance"</a>,Tine Lefebvre, Herman Bruyninckx, Joris De Schutter.<li><a href="http://cslu.ece.ogi.edu/nsel/research/ukf.html">"The Unscented Kalman Filter for Nonlinear Estimation"</a>,Eric A. Wan and Rudolph van der Merwe, 2000.</ul></dd><p><dt><b>Assumed-density filter</b> a.k.a. moment matching<dd>This algorithm chooses the Gaussian belief which is "closest", in somesense, to the exact state posterior given previous beliefs.Usually this amounts to matching the moments of the exact posterior.This is the most general approximation technique proposed to date---itutilizes not only the form of the measurement equation but also themeasurement itself.  The assumed-density filter requires analytic ornumerical solution of integrals over the measurement distribution.For this, one could use Monte Carlo, quadrature, or Laplace's method.<ul><li><a href="ep/">"Expectation Propagation for approximate Bayesian inference"</a>,T. Minka, Uncertainty in AI'2001.<li>"Stochastic models, estimation and control", Peter S. Maybeck,Volume 2, Chapter 12.7, 1982.<li><a href="http://www.unc.edu/depts/statistics/faculty/amarjit/pdffile/Amarjit7.ps">"A nonlinear filtering algorithm based on an approximation of the conditional distribution"</a>,H. J. Kushner and A. S. Budhiraja, IEEE Trans Automatic Control45(3):580-585, 2000.<li><a href="http://citeseer.ist.psu.edu/ito99gaussian.html">"Gaussian filters for nonlinear filtering problems"</a>,K. Ito and K. Q. Xiong, IEEE Trans Automatic Control 45(5): 910-927, 2000.<li><a href="http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=2&smnu=2&author_id=311&article_id=212">"Approximate Learning in Complex Dynamic Bayesian Networks"</a>,Settimi, Smith, &amp; Gargoum, UAI'1999.<li><a href="http://www.ucl.ac.uk/Stats/research/Resrprts/psfiles/135.zip">"A comparison of sequential learning methods for incompletedata"</a>,R. G. Cowell, A. P. Dawid, &amp; P. Sebastiani, Bayesian Statistics 5, 1996.<li><a href="http://www.google.co.uk/search?q=%22A+Bayesian+Approach+to+On%2Dline+Learning%22">"A Bayesian Approach to On-line Learning"</a>,Manfred Opper, On-Line Learning in Neural Networks, 1999.</ul></dd><p><!-- Laplace ADF --></dl><h2>Mixture of Gaussian belief</h2>A natural choice in moving beyond a single Gaussian is to use a mixture ofGaussian belief.  Unfortunately, an algorithm for general dynamicmodels has proven elusive.  Instead, existing algorithms assume that thedynamic model is a mixture of linear-Gaussian models, i.e. it switchesrandomly between different linear-Gaussian state/measurement equations.This can be understood as having discrete state variables in addition tothe continuous ones.For these models, the true state posterior is a mixture of Gaussians, but avery big one.  The algorithms focus on reducing the size of this mixture,in an on-line way.Most of them generalize beyond Gaussian to any exponential family.<p><dl><dt><b>Assumed-density filter</b> a.k.a. "pseudo-Bayes"<dd>Same as assumed-density filtering for a single Gaussian, but now thebelief representation is categorical for the discrete state component andconditional Gaussian for the continuous state component, producing amixture of Gaussian marginal for the continuous state component.  For eachsetting of the discrete state component, this algorithm chooses theGaussian which is "closest" to the exact state posterior given previousbeliefs.  A drawback of this algorithm is that the size of the mixture ispredetermined by the cardinality of the discrete state component.  However,it does allow the state/measurement equations, conditional on the discretestate, to be non-Gaussian.<ul><li><ahref="http://www.cs.berkeley.edu/~murphyk/Papers/skf.ps.gz">"SwitchingKalman filters"</a>, Kevin Murphy, 1998.<li>"Bayesian forecasting",P. J. Harrison and C. F. Stevens,  J Royal Stat Soc B 38:205--247, 1976.<li><ahref="http://www.cs.ru.nl/~tomh/publications.html">"Expectationpropagation for approximate inference in dynamic Bayesian networks"</a>,Tom Heskes and Onno Zoeter, Uncertainty in AI'2002.</ul></dd><p><dt><b>Gaussian-sum filter</b><dd>This is a family of algorithms which propagate the exact posterior forone step, giving a large Gaussian mixture, and then reduce the mixtureas needed.  Methods for reducing the mixture include:<dl><dt>Drop mixture components with low weight<dd><ul><li><a href="http://www.ucl.ac.uk/Stats/research/Resrprts/psfiles/135.zip">"A comparison of sequential learning methods for incompletedata"</a>,R. G. Cowell, A. P. Dawid, &amp; P. Sebastiani, Bayesian Statistics 5, 1996.<li>Tugnait, Automatica 18: 607--615, 1982<li>Smith & Winter, IEEE Conf Decision & Control, 1979 </ul><dt>Sample mixture components according to weight<dd>Used in Rao-Blackwellised particle filters:<ul><li><a href="http://citeseer.ist.psu.edu/chen00mixture.html">"Mixture Kalman Filters"</a>, Chen and Liu<li><a href="http://www.stats.ox.ac.uk/pub/clifford/Particle_Filters/jj.Abstract.html">"Building Robust Simulation-based Filters for Evolving Data Sets"</a>,J. Carpenter, P. Clifford, &amp; and P. Fearnhead</ul>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本电影欧美片| 精品在线观看免费| 日本不卡高清视频| 国产精品亚洲专一区二区三区| 92国产精品观看| 欧美一区二区精品在线| 国产精品网站在线| 一个色妞综合视频在线观看| 精品一区二区av| 99国产精品国产精品毛片| 91精品国产综合久久精品| 国产人伦精品一区二区| 亚洲6080在线| 丁香婷婷综合激情五月色| 在线视频中文字幕一区二区| 久久综合999| 夜色激情一区二区| 国产成人自拍网| 欧美色男人天堂| 国产精品色一区二区三区| 日精品一区二区三区| 99久久婷婷国产综合精品 | 国产日韩精品久久久| 一级中文字幕一区二区| 国产成人精品免费视频网站| 欧美日韩一区二区电影| 国产精品青草久久| 喷白浆一区二区| 欧美伊人久久久久久午夜久久久久| 26uuu久久综合| 日韩精品乱码免费| 99久久精品免费| 国产日韩欧美a| 久久99日本精品| 欧美三级午夜理伦三级中视频| 国产精品水嫩水嫩| 看片网站欧美日韩| 欧美日韩亚洲另类| 亚洲视频一区在线观看| 国产精品一二三四| 日韩美女主播在线视频一区二区三区 | 亚洲成人自拍一区| 色呦呦网站一区| 中文字幕视频一区二区三区久| 韩国三级中文字幕hd久久精品| 欧美三级韩国三级日本三斤 | 色综合天天综合狠狠| 国产欧美综合色| 国产在线精品一区二区不卡了| 精品视频在线看| 一区二区三区中文免费| 91丨porny丨国产| 国产精品嫩草久久久久| 国产成人综合网| 国产亚洲福利社区一区| 精品一区二区国语对白| 日韩欧美国产综合| 免费成人性网站| 日韩一区二区三区电影在线观看| 亚洲国产aⅴ天堂久久| 色婷婷综合五月| 亚洲欧美成aⅴ人在线观看| 99麻豆久久久国产精品免费优播| 中文字幕av不卡| 成人黄色免费短视频| 国产精品三级电影| 成人午夜av在线| 中文字幕精品三区| 不卡区在线中文字幕| 国产精品成人免费在线| eeuss鲁片一区二区三区在线看| 欧美国产欧美亚州国产日韩mv天天看完整 | 欧美性猛交xxxx黑人交| 一区二区理论电影在线观看| 色综合久久天天综合网| 亚洲免费伊人电影| 在线一区二区三区| 亚洲国产另类av| 欧美日韩mp4| 美女视频一区在线观看| 精品成人免费观看| 国产精品一级二级三级| 中文av字幕一区| 色婷婷综合在线| 午夜伊人狠狠久久| 欧美理论在线播放| 久久国产夜色精品鲁鲁99| 久久久久久久电影| 成人av在线网| 亚洲福利电影网| 欧美不卡一二三| 成人免费黄色大片| 亚洲精品国久久99热| 欧美日韩精品三区| 久久国产精品色婷婷| 国产亚洲成aⅴ人片在线观看| 99久久婷婷国产综合精品电影| 亚洲综合色婷婷| 欧美大片顶级少妇| 国产69精品久久久久毛片| 亚洲日本在线天堂| 欧美精品久久久久久久多人混战| 久久精品国产亚洲aⅴ| 国产亚洲精品7777| 在线这里只有精品| 久久er99热精品一区二区| 中文字幕久久午夜不卡| 欧美在线一区二区| 国产尤物一区二区| 亚洲男女毛片无遮挡| 91精品综合久久久久久| 国产精品自拍三区| 亚洲自拍另类综合| 久久品道一品道久久精品| 91天堂素人约啪| 免费观看久久久4p| 国产精品日韩精品欧美在线| 欧美色涩在线第一页| 国产一区二区三区精品欧美日韩一区二区三区 | 精品在线视频一区| 国产精品久久久久7777按摩| 67194成人在线观看| 国产高清不卡一区二区| 亚洲成人激情社区| 国产精品视频一二三区| 欧美一区二区私人影院日本| 国产91在线观看丝袜| 日本视频在线一区| 亚洲欧美乱综合| 久久久蜜桃精品| 欧美日韩免费在线视频| 成人永久免费视频| 日本不卡的三区四区五区| 亚洲特级片在线| 精品国产伦一区二区三区观看体验 | 久久久久久一二三区| 欧美老女人第四色| 不卡高清视频专区| 久久精品国产精品亚洲红杏| 亚洲一区二区三区三| 国产精品视频看| 久久综合九色综合97_久久久| 欧美艳星brazzers| 成人一区二区三区在线观看| 青娱乐精品视频在线| 亚洲一本大道在线| 中文字幕久久午夜不卡| 26uuu亚洲综合色| 欧美一区二区三区视频免费播放 | 亚洲午夜精品一区二区三区他趣| 中文字幕高清不卡| 久久先锋资源网| 日韩一区二区电影网| 精品1区2区3区| 色视频一区二区| 暴力调教一区二区三区| 国产一区二区精品久久91| 日韩av高清在线观看| 亚洲成人资源网| 亚洲国产一二三| 亚洲精品中文在线观看| 最新国产成人在线观看| 国产视频不卡一区| 精品av久久707| 精品少妇一区二区三区| 欧美一区二区视频观看视频| 欧美精品九九99久久| 欧美丝袜自拍制服另类| 91传媒视频在线播放| 日本伦理一区二区| 日本高清不卡一区| 色哟哟一区二区| 色综合天天综合狠狠| 色综合久久99| 91免费看`日韩一区二区| 99re这里只有精品首页| 99在线精品视频| 不卡在线视频中文字幕| 99视频精品免费视频| www.欧美日韩| 91社区在线播放| 在线观看日韩av先锋影音电影院| 色综合色综合色综合| 在线免费观看日本一区| 精品视频在线免费看| 宅男噜噜噜66一区二区66| 欧美一区二区三区在线电影| 欧美一区二区在线不卡| 日韩午夜激情电影| 欧美精品一区男女天堂| 欧美精品一区二区三区在线播放| 精品久久人人做人人爰| 国产亚洲一区二区三区| 国产精品网站一区| 亚洲免费观看视频| 亚洲第一成年网| 蜜臀av性久久久久蜜臀aⅴ流畅| 国产一区二区视频在线| 国产99精品国产| 色欧美88888久久久久久影院|