亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? dynamic.html

?? 粒子濾波
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<dt>Repeatedly merge most similar pair of mixture components<dd><ul><li>"The two-filter formula for smoothing and an implementation of theGaussian-sum smoother",G. Kitagawa, Annals Institute of Statistical Mathematics 46(4):605-623, 1994<li><a href="http://www.google.com/search?q=&quot;Bayesian Fault Detection and Diagnosis in Dynamic Systems&quot;">"Bayesian Fault Detection and Diagnosis in Dynamic Systems"</a>,U. Lerner, R. Parr, D. Koller, &amp; G. Biswas</ul><!-- <dt>Merge mixture components by EM<dd>--><dt>Minimize divergence between the large and small mixture by nonlinear optimization<dd><ul><li>"Sequential methods for mixture models"M. Stephens, chapter 5in <a href="http://www.stat.washington.edu/stephens/papers/tabstract.html">"Bayesian Methods for Mixtures of Normal Distributions"</a>, 1997</ul></dl></dd><p></dl><h2>Nonparametric belief</h2><dl><dt><b>Histogram filter</b><dd>Quantize the state space and represent the belief by a histogram.The filtering equations then match a hidden Markov model.<ul><li>"A general filter for measurements with any probability distribution",Y. Rosenberg and M. Werman, CVPR'97, 654--659.<li>"Non-Gaussian state-space modeling of nonstationary time series",G. Kitagawa, J Am Stat Assoc 82:1032--1063, 1987.<li>"Recursive Bayesian estimation using piecewise constant approximations",Kramer and Sorenson, Automatica 24(6):789--801, 1988.</ul></dd><p><dt><b>Particle filter</b><dd>Represent the state posterior by a large set of samples drawn from thedistribution.  The particles are updated on-line to always represent thecurrent state posterior.The most common way to do this is to pick a particle for the previousstate, sample a particle for the current state using the state equation, and weight the particle by the probability of the measurement.Sample the particles according to weight to get a set of unweightedparticles.<ul><li><a href="http://citeseer.ist.psu.edu/42189.html">"Sequential Monte Carlo methods for Dynamic Systems"</a>,Liu and Chen, JASA 93, 1998.<li><a href="http://www-sigproc.eng.cam.ac.uk/smc/">Sequential Monte Carlomethods homepage</a><li><a href="http://citeseer.ist.psu.edu/chen00mixture.html">"Mixture Kalman Filters"</a></ul></dd><p><dt><b>Particle filter with interpolation</b><dd>A particle filter where you increase diversity by fitting a density tothe particles and resampling from that density.<ul><li>"A hybrid bootstrap filter for target tracking in clutter",N. Gordon,IEEE Trans Aerospace Electronic Systems 33:353-358, 1997.<li><a href="http://citeseer.ist.psu.edu/504843.html">"A Tutorial on Particle Filters for On-line Non-linear/Non-GaussianBayesian Tracking"</a> (page 11)<li><a href="http://www.google.com/search?q=&quot;Using learning for approximation in stochastic processes&quot;">"Using learning for approximation in stochastic processes"</a><li><a href="http://citeseer.ist.psu.edu/peshkin02factored.html">"Factored Particles for Scalable Monitoring"</a></ul></dd><p><dt><b>Particle filter with MCMC steps</b><dd>A particle filter where you increase diversity by including MCMC steps.<ul><li>"Following a moving target---Bayesian inference for dynamic Bayesian models"W. Gilks and C. Berzuini, J Royal Stat Soc B 63(1):127--146, 2001.<li><a href="http://citeseer.ist.psu.edu/doucet99particle.html">"Particle filters for state estimation of jump Markov linear systems"</a><li>"Sequential importance sampling for nonparametric Bayes models: The next generation", S. N. MacEachern, M. Clyde, J. S. Liu, Canadian J of Statistics 27(2):251-267, 1999. </ul></dd><p><dt><b>MCMC filtering</b><dd>MCMC can be specially designed to provide efficient, bounded-memory filtering, for example via randomized Gibbs sampling.<ul><li><a href="http://citeseer.ist.psu.edu/marthi02decayed.html">"Decayed MCMC Filtering"</a></ul></dd><p></dl><hr><h2>Batch filtering/smoothing algorithms</h2><dl><dt><b>Kalman smoothing</b><dd>Used with the Kalman filter, or any filter which linearizes thestate equations, e.g. EKF, UF, LUF, ADF.<ul><li><a href="http://www.cs.unc.edu/~welch/kalman/">The Kalman filter</a><li><ahref="http://vismod.media.mit.edu/tech-reports/TR-531-ABSTRACT.html">"FromHidden Markov Models to Linear Dynamical Systems"</a>, T. Minka, 1998</ul></dd><p><dt><b>Expectation Propagation</b><dd>Provides batch filtering and smoothing.Can be used with any method for linearizing the measurement equations, e.g. EKF, UF, LUF, ADF.  Unlike Kalman smoothing, the measurement equationsare re-linearized until a globally-stable solution is reached, givingbetter results.<ul><li><a href="ep/">"Expectation Propagation for approximate Bayesian inference"</a>,T. Minka, Uncertainty in AI'2001.<li><ahref="http://www.cs.ru.nl/~tomh/publications.html">"Expectationpropagation for approximate inference in dynamic Bayesian networks"</a>,Tom Heskes and Onno Zoeter, Uncertainty in AI'2002.</ul></dd><p><dt><b>Variational lower bounds</b><dd>Provides batch filtering and smoothing.  Meshes well with parameterestimation.<ul><li><a href="http://citeseer.ist.psu.edu/beal01variational.html">"TheVariational Kalman Smoother"</a><li><a href="http://citeseer.ist.psu.edu/543841.html">"Adaptive classification by variational Kalman filtering"</a></ul></dd><p><dt><b>Two-filter smoothing</b><dd>Run filtering forward and independently in reverse and combine the results.Useful for Gaussian-sum filters.<ul><li>"The two-filter formula for smoothing and an implementation of theGaussian-sum smoother",G. Kitagawa, Annals Institute of Statistical Mathematics 46(4):605-623, 1994</ul></dd><p><dt><b>Particle smoothing by sampling</b><dd>Reweight and resample the particles at time <var>t</var>, based on a sampled particle from time <var>t+1</var>.<ul><li><a href="http://citeseer.ist.psu.edu/436555.html">"Monte Carlo smoothing with application to audio signalenhancement"</a>,W. Fong, S. Godsill, A. Doucet, &amp; M. West,IEEE Trans. on Signal Processing, to appear, 2001.<li>"Monte Carlo filter and smoother for non-Gaussian nonlinear statespace models", G. Kitagawa, J. of Computational and GraphicalStatistics 5:1-25, 1996</ul></dd><p><dt><b>Particle smoothing by interpolation</b><dd>Reweight and resample the particles at time <var>t</var>, based on a fitted density to the particles at time<var>t+1</var>.<ul><li><a href="http://www.google.com/search?q=&quot;A General Algorithm for Approximate Inference and its Application to Hybrid Bayes Nets&quot;">"A General Algorithm for Approximate Inference and itsApplication to Hybrid Bayes Nets"</a><li><a href="http://www.cs.cmu.edu/~thrun/papers/thrun.mchmm.html">"Monte Carlo Hidden Markov Models"</a></ul></dd><p><dt><b>MCMC</b><dd>Gibbs sampling or Metropolis-Hastings.<ul><li><a href="http://citeseer.ist.psu.edu/godsill00monte.html">"Monte Carlo smoothing for non-linear time series"</a><li><a href="ftp://ftp.stat.duke.edu/pub/WorkingPapers/95-22.ps">"Bayesian forecasting of multinomial time series through conditionally Gaussian dynamic models"</a>,C. Cargnoni and P. Mueller and M. West, J. Amer Stat Assoc 92:587--606, 1997.<li><a href="http://ht.econ.kobe-u.ac.jp/~tanizaki/cv/cv-e.htm">"Bayesian Estimation of State-Space Model Using theMetropolis-Hastings Algorithm within Gibbs Sampling"</a>,Geweke and Tanizaki, Computational Statistics and Data Analysis 37(2):151-170, 2001.</ul></dd><p><dt>Markov Random Field algorithms<dd>Relaxation, etc.</dd><p></dl><hr><!-- hhmts start -->Last modified: Thu Mar 22 14:48:18 GMT 2007<!-- hhmts end --></body> </html>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本一区二区成人在线| 久久久亚洲欧洲日产国码αv| 亚洲精品免费在线观看| 94色蜜桃网一区二区三区| 亚洲三级电影网站| 欧洲激情一区二区| 麻豆精品一区二区综合av| www久久精品| 成人av在线一区二区| 亚洲日本va午夜在线电影| 欧美无乱码久久久免费午夜一区 | 成人手机在线视频| 国产精品大尺度| 欧美日韩另类一区| 国产一区二区三区av电影| 国产精品麻豆视频| 欧美精品1区2区| 国产成人精品1024| 亚洲成人激情综合网| 欧美v日韩v国产v| 北条麻妃一区二区三区| 日韩影院免费视频| 中文av一区特黄| 91精品国产综合久久久久久| 国产精品中文欧美| 玉足女爽爽91| 2020日本不卡一区二区视频| 99久久伊人精品| 日韩**一区毛片| 中文字幕一区在线观看视频| 欧美一区二区在线不卡| 成人一区二区视频| 蜜臀av亚洲一区中文字幕| 国产精品久久久久三级| 精品国产乱码久久久久久夜甘婷婷| 一道本成人在线| 国产伦精品一区二区三区免费| 亚洲综合久久av| 国产精品狼人久久影院观看方式| 欧美一三区三区四区免费在线看| 9人人澡人人爽人人精品| 久久精品噜噜噜成人av农村| 亚洲夂夂婷婷色拍ww47| 国产精品私人自拍| 久久久久久久综合日本| 日韩一区二区在线看| 一本色道久久综合狠狠躁的推荐 | 欧美日韩国产精品自在自线| 成人免费va视频| 激情欧美一区二区三区在线观看| 亚洲午夜精品17c| 亚洲日本在线天堂| 国产精品美女久久久久久久 | 中文字幕一区二区视频| 日韩精品一区二区三区三区免费| 91国模大尺度私拍在线视频| 高清av一区二区| 激情偷乱视频一区二区三区| 日本免费在线视频不卡一不卡二| 亚洲国产视频一区| 日韩毛片在线免费观看| 中文字幕亚洲综合久久菠萝蜜| 久久久精品国产免大香伊| 欧美成人女星排名| 日韩一区二区三区免费看| 欧美丰满嫩嫩电影| 欧美日韩免费电影| 欧美日韩www| 欧美一区二区三区视频| 91精品国产福利| 国产乱理伦片在线观看夜一区| 性做久久久久久| 亚洲123区在线观看| 亚洲高清不卡在线| 午夜av区久久| 丝袜美腿亚洲一区| 午夜精品视频一区| 午夜免费欧美电影| 免费三级欧美电影| 极品瑜伽女神91| 国产一区二区三区在线观看免费 | 91麻豆国产香蕉久久精品| 成人精品免费看| av毛片久久久久**hd| 99精品久久只有精品| 色综合天天性综合| 欧美性色欧美a在线播放| 7777女厕盗摄久久久| 精品国产欧美一区二区| 中文字幕巨乱亚洲| 一区二区三区四区亚洲| 午夜精品一区二区三区电影天堂| 麻豆一区二区99久久久久| 国产成人免费9x9x人网站视频| 大桥未久av一区二区三区中文| 成人国产电影网| 在线欧美日韩精品| 日韩美女天天操| 国产日韩欧美在线一区| 亚洲激情成人在线| 精品亚洲成a人| 不卡的av网站| 91麻豆精品国产91久久久使用方法| 欧美人xxxx| 中文字幕av一区 二区| 亚洲一区二区三区四区在线免费观看 | 国产精品国产三级国产aⅴ中文| 亚洲精品少妇30p| 蜜臀av一级做a爰片久久| 成人午夜激情视频| 欧美军同video69gay| 久久综合九色综合97婷婷| 亚洲视频一区二区在线| 青草av.久久免费一区| 成人动漫av在线| 欧美一级在线视频| 国产精品九色蝌蚪自拍| 日本不卡一区二区三区高清视频| 粉嫩av亚洲一区二区图片| 欧美羞羞免费网站| 国产亚洲精品中文字幕| 性做久久久久久久久| 成人黄页毛片网站| 精品国产乱码久久久久久免费| 亚洲激情在线播放| 国产成人在线视频网站| 884aa四虎影成人精品一区| 1区2区3区欧美| 国产一区二区看久久| 欧美日韩一区小说| 自拍偷拍欧美激情| 国产成人在线视频播放| 欧美日韩一二三区| 亚洲色图欧洲色图| 粉嫩久久99精品久久久久久夜 | 日韩免费性生活视频播放| 亚洲男人的天堂一区二区| 国产美女视频一区| 日韩一区二区三区免费看 | 亚洲欧洲成人av每日更新| 久久不见久久见中文字幕免费| 在线观看网站黄不卡| 国产精品嫩草99a| 国产一区二区三区四| 日韩精品一区二| 午夜日韩在线观看| 在线一区二区三区| 中文字幕一区二区在线播放| 国产盗摄女厕一区二区三区| 亚洲精品一区二区三区精华液 | 最好看的中文字幕久久| 国产电影一区二区三区| 久久先锋影音av鲁色资源网| 蜜臀av性久久久久av蜜臀妖精 | 一区二区三区精品在线| 不卡一区二区中文字幕| 国产农村妇女毛片精品久久麻豆| 黄色成人免费在线| 久久综合色一综合色88| 极品尤物av久久免费看| 精品88久久久久88久久久| 久久国内精品视频| 精品久久久影院| 国产一区美女在线| 久久综合一区二区| 精品亚洲porn| 26uuu精品一区二区三区四区在线| 免费人成在线不卡| 精品区一区二区| 国产综合久久久久久久久久久久| 久久网站最新地址| 粉嫩嫩av羞羞动漫久久久| 国产精品久久久久久久蜜臀 | 亚洲一卡二卡三卡四卡五卡| 精品婷婷伊人一区三区三| 亚洲成人在线网站| 6080国产精品一区二区| 久久er精品视频| 久久久99精品免费观看| 成人黄色在线网站| 亚洲精品国产一区二区精华液| 色婷婷av一区二区三区软件| 亚洲图片欧美色图| 日韩精品一区二区三区在线| 国产精品主播直播| 亚洲免费大片在线观看| 欧美日韩国产综合一区二区| 蜜桃视频第一区免费观看| 久久精品欧美一区二区三区不卡| 国产ts人妖一区二区| 亚洲欧美韩国综合色| 91精品久久久久久蜜臀| 国产露脸91国语对白| 亚洲黄色片在线观看| 日韩午夜精品电影| 成人av电影在线网| 日韩成人午夜电影| 中文一区在线播放| 91精品一区二区三区在线观看| 久久爱www久久做|