?? sem_d2.m
字號:
% PURPOSE: An example of using sem() on a large data set
% Gibbs sampling spatial autoregressive model
%---------------------------------------------------
% USAGE: sem_d2 (see sem_d for a small data set)
%---------------------------------------------------
clear all;
% NOTE a large data set with 3107 observations
% from Pace and Barry, takes around 150-250 seconds
load elect.dat; % load data on votes
y = (elect(:,7)./elect(:,8)); % convert to proportions
x1 = log(elect(:,9)./elect(:,8)); % of population
x2 = log(elect(:,10)./elect(:,8));
x3 = log(elect(:,11)./elect(:,8));
latt = elect(:,5);
long = elect(:,6);
n = length(y);
x = [ones(n,1) x1 x2 x3];
clear x1; clear x2; clear x3;
clear elect; % conserve on RAM memory
[j,W,j] = xy2cont(latt,long); % contiguity-based spatial Weight matrix
vnames = strvcat('voters','const','educ','homeowners','income');
% use defaults including lndet approximation
result = sem(y,x,W); % maximum likelihood estimates
prt(result,vnames);
info.eigs = 0; % compute minimum and maximum eigenvalues of W
% to determine bounds on rho
info.lflag = 0; % use full log-determinant
result2 = sem(y,x,W,info); % maximum likelihood estimates
prt(result2,vnames);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -