?? f2_sem.m
字號:
function llike = f2_sem(parm,y,x,W,detval);
% PURPOSE: evaluates log-likelihood -- given ML parameters
% spatial error model using sparse matrix algorithms
% ---------------------------------------------------
% USAGE:llike = f2_sem(parm,y,X,W,detm)
% where: parm = vector of maximum likelihood parameters
% parm(1:k-2,1) = b, parm(k-1,1) = rho, parm(k,1) = sige
% y = dependent variable vector (n x 1)
% X = explanatory variables matrix (n x k)
% W = spatial weight matrix
% ldet = matrix with [rho log determinant] values
% computed in sem.m using one of Kelley Pace's routines
% ---------------------------------------------------
% NOTE: this is really two functions depending
% on nargin = 3 or nargin = 4 (see the function)
% ---------------------------------------------------
% RETURNS: a scalar equal to minus the log-likelihood
% function value at the ML parameters
% --------------------------------------------------
% SEE ALSO: sem, f2_sem2, f_sem
% ---------------------------------------------------
% written by: James P. LeSage 4/2002
% University of Toledo
% Department of Economics
% Toledo, OH 43606
% jlesage@spatial.econometrics.com
n = length(y);
k = length(parm);
b = parm(1:k-2,1);
rho = parm(k-1,1);
sige = parm(k,1);
gsize = detval(2,1) - detval(1,1);
i1 = find(detval(:,1) <= rho + gsize);
i2 = find(detval(:,1) <= rho - gsize);
i1 = max(i1);
i2 = max(i2);
index = round((i1+i2)/2);
if isempty(index)
index = 1;
end;
detm = detval(index,2);
e = y - x*b;
ed = e - rho*W*e;
epe = ed'*ed;
tmp = 1/(2*sige);
llike = detm - (n/2)*log(sige) - (n/2)*log(pi) - tmp*epe;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -