?? sdmt_gd.m
字號:
% PURPOSE: An example of using sdmt_g() Gibbs sampling
% spatial durbin tobit model
% (on a small data set)
%---------------------------------------------------
% USAGE: sdmt_gd (see also sdmt_gd2 for a large data set)
%---------------------------------------------------
clear all;
% W-matrix from Anselin's neigbhorhood crime data set
load anselin.dat; % standardized 1st-order spatial weight matrix
latt = anselin(:,4);
long = anselin(:,5);
[junk W junk] = xy2cont(latt,long);
[n junk] = size(W);
IN = eye(n);
rho = 0.7; % true value of rho
sige = 1;
k = 2;
x = randn(n,k);
beta(1,1) = -1.0;
beta(2,1) = 1.0;
% generate SAR model
y = (IN-rho*W)\(x*beta) + (IN-rho*W)\(randn(n,1)*sqrt(sige));
ysave = y;
res = sdm(ysave,x,W); % maximum likelihood estimates
prt(res); % based on non-truncated data
limit = 0;
ind = find(y < limit);
if length(ind) > 0
y(ind,1) = limit; % censor values
else
error('no censored values');
end;
%prior.rval = 6; % heteroscedastic prior
prior.novi = 1; % homoscedastic prior
prior.limit = limit;
prior.trunc = 'left';
ndraw = 2500;
nomit = 500;
res0 = sdm_g(ysave,x,W,ndraw,nomit,prior); % MCMC estimates
res0.tflag = 'tstat'; % based on non-truncated data
prt(res0);
results = sdmt_g(y,x,W,ndraw,nomit,prior);
results.tflag = 'tstat';
prt(results);
subplot(1,1,1);
tt=1:n;
plot(tt,ysave,tt,results.yhat,'--');
title('actual y vs predicted');
pause;
plot(tt,ysave,tt,results.ymean,'--');
title('actual y vs mean of latent y-draws');
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -