亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? zishiyingmohukongzhi.m

?? 實(shí)現(xiàn)自適應(yīng)模糊控制的功能
?? M
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
clear		% Clear all variables in memory
eold=0; 	% Intial condition used to calculate c
rold=0; 	% Intial condition used to calculate r
yeold=0; 	% Intial condition used to calculate yc
ymold=0; 	% Initial condition for the first order reference model

% Next, initialize parameters for the fuzzy controller

nume=11; 	% Number of input membership functions for the e
			% universe of discourse
numc=11; 	% Number of input membership functions for the c
			% universe of discourse

ge=1/2;,gc=1/2;,gu=5;
		% Scaling gains for tuning membership functions for
		% universes of discourse for e, c and u respectively
		% These are tuned to improve the performance of the FMRLC
we=0.2*(1/ge);
	% we is half the width of the triangular input membership
	% function bases (note that if you change ge, the base width
	% will correspondingly change so that we always end
	% up with uniformly distributed input membership functions)
	% Note that if you change nume you will need to adjust the
	% "0.2" factor if you want membership functions that
	% overlap in the same way.
wc=0.2*(1/gc);
	% Similar to we but for the c universe of discourse
base=0.4*gu;
	% Base width of output membership fuctions of the fuzzy
	% controller

% Place centers of membership functions of the fuzzy controller:

%  Centers of input membership functions for the e universe of
% discourse for  of fuzzy controller (a vector of centers)
ce=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/ge);

% Centers of input membership functions for the c universe of
% discourse for  of fuzzy controller (a vector of centers)
cc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gc);
gf=0;

fuzzyrules=[-1  -1   -1   -1  -1    -1  -0.8 -0.6 -0.4 -0.2  0;
	    -1  -1   -1   -1  -1   -0.8 -0.6 -0.4 -0.2   0  0.2;
	    -1  -1   -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2 0.4;
	    -1  -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4 0.6;
	    -1  -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6 0.8;
	    -1 -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8  1;
	  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1   1;
	  -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1   1;
	  -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1    1   1;
	  -0.2  0    0.2  0.4  0.6  0.8   1    1    1    1   1;
	   0   0.2   0.4  0.6  0.8   1    1    1    1    1   1]*gu*gf;

% Next, we define some parameters for the fuzzy inverse model

gye=1/2;,gyc=1/2;
	% Scaling gains for the error and change in error for
	% the inverse model
	% These are tuned to improve the performance of the FMRLC
gp=0.2;

numye=11; 	% Number of input membership functions for the ye
			% universe of discourse
numyc=11; 	% Number of input membership functions for the yc
			% universe of discourse

wye=0.2*(1/gye);	% Sets the width of the membership functions for
					% ye from center to extremes
wyc=0.2*(1/gyc);	% Sets the width of the membership functions for
					% yc from center to extremes
invbase=0.4*gp; % Sets the base of the output membership functions
				% for the inverse model

% Place centers of inverse model membership functions
% For error input for learning Mechanism
cye=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gye);

% For change in error input for learning mechanism
cyc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gyc);

% The next matrix contains the rule-base matrix for the fuzzy
% inverse model.  Notice that for simplicity we choose it to have
% the same structure as the rule-base for the fuzzy controller.
% While this will work for the control of the simple first order
% linear system for many nonlinear systems a different structure
% will be needed for the rule-base.  Again, the entries are
% the centers of the output membership functions, but now for
% the fuzzy inverse model.

inverrules=[-1  -1   -1   -1  -1    -1  -0.8 -0.6 -0.4 -0.2  0;
	    -1  -1   -1   -1  -1   -0.8 -0.6 -0.4 -0.2   0  0.2;
	    -1  -1   -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2 0.4;
	    -1  -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4 0.6;
	    -1  -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6 0.8;
	    -1 -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8  1;
	  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1   1;
	  -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1   1;
	  -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1    1   1;
	  -0.2  0    0.2  0.4  0.6  0.8   1    1    1    1   1;
	   0   0.2   0.4  0.6  0.8   1    1    1    1    1   1]*gp;

% Next, we set up some parameters/variables for the
% knowledge-base modifier

d=1;
% This sets the number of steps the knowledge-base modifier looks
% back in time. For this program it must be an integer
% less than or equal to 10 (but this is easy to make larger)

% The next four vectors are used to store the information about
% which rules were on 1 step in the past, 2 steps in the past, ....,
% 10 steps in the past (so that picking 0<= d <= 10 can be used).

meme_int=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of e_int
meme_count=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of e_count
memc_int=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of c_int
memc_count=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of c_count

%
%  Next, we intialize the simulation of the closed-loop system.
%

k_p=1;	  % The numerator of the plant.  Change this value to study
		  % the ability of the FMRLC to control other plants.  Also,
		  % you can make this a time-varying parameter.
zeta_p=.707;
       % Damping ratio for the second order plant (could change this
	   % to see how the system will adapt to it)
w_p=1; % Undamped natural frequency for the plant (could change this
	   % to see how the system will adapt to it)
k_r=1;
 % The numerator of the reference model.  Change this value to study
 % the ability of the FMRLC to meet other performance specifications.
a_r=1;
    % The value of -a_r is the pole position for the reference model.
	% Change this value to study the ability of the FMRLC to meet
	% other performance specifications (e.g., a faster response).

t=0; 		% Reset time to zero
index=1;	% This is time's index (not time, its index).
tstop=64;	% Stopping time for the simulation (in seconds)
step=0.01;  % Integration step size
x=[0;0];	% Intial condition on state	of the plant

% Need a state space representation for the plant.  Since our
% plant is linear we use the standard form of xdot=Ax+Bu, y=Cx+Du
% Matrix A of state space representation of plant

A=[0 1;
   -w_p^2 -2*zeta_p*w_p];
B=[0; 1];	    % Matrix B of state space representation of plant
C=[k_p 0];	    % Matrix C of state space representation of plant


%
% Next, we start the simulation of the system.  This is the main
% loop for the simulation of the FMRLC.
%
while t <= tstop
	y(index)=C*x;     % Output of the plant

% Next, we define the reference input r as a sine wave

r(index)=sin(.6*t);



ym(index)=(1/(2+a_r*step))*((2-a_r*step)*ymold+...
                                    k_r*step*(r(index)+rold));

ymold=ym(index);
rold=r(index);
	% This saves the past value of the ym (r) so that we can use it
	% the next time around the loop

% Now that we have simulated the next step for the plant and reference
% model we will focus on the two fuzzy components.

% First, for the given fuzzy controller inputs we determine
% the extent at which the error membership functions
% of the fuzzy controller are on (this is the fuzzification part).

c_count=0;,e_count=0;   % These are used to count the number of
						% non-zero mf certainitie of e and c
e=r(index)-y(index);
			% Calculates the error input for the fuzzy controller
c=(e-eold)/step;
	% Calculates the change in error input for the fuzzy controller
eold=e;
% Saves the past value of e for use in the next time through the
% loop

% The following if-then structure fills the vector mfe
% with the certainty of each membership fucntion of e for the
% current input e

	if e<=ce(1)		% Takes care of saturation of the left-most
					% membership function
         mfe=[1 0 0 0 0 0 0 0 0 0 0]; % i.e., the only one on is the
         							  %left-most one
	 e_count=e_count+1;,e_int=1; 	  %  One mf on, it is the
	 								  %left-most one.
	elseif e>=ce(nume)				  % Takes care ofsaturation
									  %of the right-most mf
	 mfe=[0 0 0 0 0 0 0 0 0 0 1];
	 e_count=e_count+1;,e_int=nume; % One mf on, it is the
	 								%right-most one
	else      % In this case the input is on the middle part of the
			  % universe of discourse for e
			  % Next, we are going to cycle through the mfs to
			  % find all that are on
	   for i=1:nume
		 if e<=ce(i)
		  mfe(i)=max([0 1+(e-ce(i))/we]);
		  				% In this case the input isto the
		  				% left of the center ce(i)and we compute
						% the value of the mfcentered at ce(i)
						% for this input e
			if mfe(i)~=0
				% If the certainty is not equal to zerothen say
				% that have one mf on by incrementing our count
			 e_count=e_count+1;
			 e_int=i;	% This term holds the index last entry
			 			% with a non-zero term
			end
		 else
		  mfe(i)=max([0,1+(ce(i)-e)/we]);
		  						% In thiscase the input is to the
		  						% right ofthe center ce(i)
			if mfe(i)~=0
			 e_count=e_count+1;
			 e_int=i;  % This term holds the index of the
			 		   % last entry with a non-zero term

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
奇米一区二区三区av| 日韩高清中文字幕一区| 亚洲成人手机在线| 国产毛片精品国产一区二区三区| 色8久久精品久久久久久蜜| 2欧美一区二区三区在线观看视频| 亚洲综合图片区| 91网站在线观看视频| 久久久综合精品| 麻豆精品久久精品色综合| 91成人在线精品| 午夜天堂影视香蕉久久| 欧美三级韩国三级日本三斤| 亚洲视频一二三区| 成人午夜免费av| 久久久久亚洲蜜桃| 99视频有精品| 国产精品乱码人人做人人爱| 韩国欧美国产1区| 日韩片之四级片| 天天综合色天天综合色h| 久久久综合九色合综国产精品| 94-欧美-setu| 一区二区三区中文字幕电影| jizzjizzjizz欧美| 亚洲国产精品一区二区久久恐怖片| 一本一道久久a久久精品| 中文字幕在线一区二区三区| 蜜臀99久久精品久久久久久软件| 日本一区二区综合亚洲| 国产a视频精品免费观看| 日本一区二区三区电影| 欧美精品自拍偷拍| 久久精品国产99久久6| 精品盗摄一区二区三区| 国产精品综合av一区二区国产馆| 久久久久久9999| 欧洲精品在线观看| 视频一区欧美日韩| 日韩一区二区影院| 97久久精品人人爽人人爽蜜臀| 日本v片在线高清不卡在线观看| 国产精品免费人成网站| 欧美一区二区三区系列电影| 六月丁香综合在线视频| 亚洲另类在线视频| 欧美性videosxxxxx| 蜜乳av一区二区三区| 亚洲视频免费看| 久久久.com| 色狠狠色噜噜噜综合网| 国产激情精品久久久第一区二区| 亚洲色图一区二区三区| 久久久国产一区二区三区四区小说 | 亚洲欧美福利一区二区| 欧美性极品少妇| 不卡av电影在线播放| 亚洲在线视频一区| 亚洲欧美日韩一区| 国产三级欧美三级| 久久先锋影音av鲁色资源网| 91精品国产综合久久久久久久久久| 久久国产精品露脸对白| 日韩专区中文字幕一区二区| 亚洲精品久久久蜜桃| 成人免费在线视频观看| 国产精品女同一区二区三区| 国产网红主播福利一区二区| 精品久久久久久久人人人人传媒 | 久久超碰97中文字幕| 亚洲成人7777| 亚洲成人av一区二区| 性久久久久久久| 亚洲va国产天堂va久久en| 亚洲最快最全在线视频| 夜夜精品视频一区二区| 亚洲制服丝袜在线| 亚洲一区二区三区自拍| 天天综合日日夜夜精品| 性做久久久久久久久| 午夜成人在线视频| 日韩高清在线一区| 久久成人18免费观看| 国产一区二区三区免费在线观看| 国产一本一道久久香蕉| 国产 日韩 欧美大片| 成人av电影在线| 在线精品视频一区二区| 欧美在线观看一二区| 777欧美精品| 久久综合色播五月| 中文欧美字幕免费| 樱花影视一区二区| 丝袜亚洲另类丝袜在线| 精品一二三四区| 日本女人一区二区三区| 久久国产精品72免费观看| 国产原创一区二区| 99久久精品国产观看| 欧美色综合网站| 欧美不卡一区二区三区四区| 国产女主播在线一区二区| 亚洲三级免费观看| 亚洲成人一区在线| 国产在线不卡一区| 日本韩国精品在线| 日韩欧美一区二区不卡| 欧美一区二区三区视频| 久久久久久久综合| 亚洲人成网站精品片在线观看| 亚洲成人一区二区在线观看| 国产精品伊人色| 欧美在线三级电影| 精品国产一区二区精华| 亚洲天堂成人在线观看| 蜜臀av性久久久久蜜臀aⅴ流畅 | 精品久久久久久久久久久院品网 | 美女mm1313爽爽久久久蜜臀| 风间由美一区二区av101| 色94色欧美sute亚洲线路二| 精品久久人人做人人爰| 亚洲欧美日韩国产成人精品影院 | 亚洲成人午夜影院| 风间由美一区二区三区在线观看| 欧美日韩一区二区三区免费看| 久久久国产精品不卡| 午夜一区二区三区在线观看| 成人综合婷婷国产精品久久蜜臀| 欧美日韩免费在线视频| 国产欧美日韩另类一区| 日韩成人av影视| 色婷婷精品久久二区二区蜜臀av | 中文字幕av一区二区三区高| 亚洲国产精品激情在线观看| 五月激情综合网| 成人h动漫精品| 精品免费国产二区三区| 亚洲国产欧美一区二区三区丁香婷| 国产精品一二三四| 日韩手机在线导航| 亚洲成人福利片| 99在线热播精品免费| xfplay精品久久| 日本在线播放一区二区三区| 一本大道久久a久久综合婷婷| 久久久久久久性| 九九九久久久精品| 欧美一区二区高清| 国产成人精品影院| 欧美岛国在线观看| 奇米精品一区二区三区四区| 欧美亚洲禁片免费| 亚洲激情在线播放| 91丨porny丨首页| 久久精品在线观看| 国产一区二区免费看| 精品国偷自产国产一区| 卡一卡二国产精品| 日韩三级视频中文字幕| 日韩二区在线观看| 91麻豆精品91久久久久同性| 午夜久久久久久久久| 欧美日韩国产123区| 国产日韩三级在线| 国产一区二区久久| 国产清纯在线一区二区www| 国产一区二区三区av电影| 精品福利在线导航| 国产伦精品一区二区三区在线观看 | 中文字幕在线一区| 色噜噜久久综合| 亚洲一区二区三区小说| 欧美三级在线播放| 午夜电影网一区| 日韩美女一区二区三区| 久99久精品视频免费观看| 精品精品欲导航| 国产精品1区2区| 国产精品麻豆一区二区| 99久久精品99国产精品| 亚洲一区在线播放| 欧美一区二区三区四区高清| 狠狠色丁香久久婷婷综合_中| 久久久久久久久99精品| 99视频在线精品| 丝袜美腿亚洲一区二区图片| 欧美一区二区三区在线电影| 韩国女主播成人在线观看| 国产肉丝袜一区二区| 99re成人精品视频| 亚洲国产日韩a在线播放| 日韩三级视频中文字幕| 国产69精品久久777的优势| 亚洲视频免费在线| 欧美日韩国产综合草草| 国产最新精品精品你懂的| 国产精品久久久久婷婷| 欧美日韩日本视频| 国产成人在线色| 一区二区不卡在线播放|