亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? gtm.m

?? The Matlab Toolbox for Pattern Recognition
?? M
字號(hào):
%GTM  Fit a Generative Topographic Mapping using the %     expectation-maximisation algorithm.%%   [W,L] = GTM (A,K,M,MAPTYPE,REG,EPS,MAXITER)%% INPUT%   A       Dataset or double matrix%   K       Vector containing number of nodes per dimension (default: [5 5], 2D map)%   M       Vector containing number of basis functions per dimension (default: [10 10])   %   MAPTYPE Map onto mean of posterior ('mean', default) or mode ('mode')%   REG     Regularisation (default: 0)%   EPS     Change in likelihood to stop training (default: 1e-5)%   MAXITER Maximum number of iterations (default: inf)%% OUTPUT%   W       GTM mapping%   L       Likelihood%% DESCRIPTION% Trains a Generative Topographic Mapping of any dimension, using the EM % algorithm.%% REFERENCES% Bishop, C.M., Svensen, M. and Williams, C.K.I., "GTM: The Generative % Topographic Mapping", Neural Computation 10(1):215-234, 1998.%% SEE ALSO% PLOTGTM, SOM, PLOTSOM% (c) Dick de Ridder, 2003% Information & Communication Theory Group% Faculty of Electrical Engineering, Mathematics and Computer Science% Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlandsfunction [w,L] = gtm (a, arg2, M, mapto, reg, epsilon, maxiter)	prtrace(mfilename);	step = 10;    if (nargin < 2)        prwarning(3,'number of nodes K not given, assuming [5 5] (2D map)');        arg2 = [5 5];    end;    	if (~ismapping(arg2))		if (nargin < 7)		    maxiter = inf;		end;		if (nargin < 6)            prwarning(3,'stopping criteria not given, assuming EPSILON = 1e-10');            epsilon = 1e-10;		end;		if (nargin < 5)            prwarning(3,'regularisation REG not given, assuming 0');		    reg = 0;		end;		if (nargin < 4)            prwarning(3,'mapping type MAPTO not given, assuming mean');		    mapto = 'mean';		end;        if (nargin < 3)            prwarning(3,'number of basis functions M not given, assuming 10');            M = 5;        end;    end;    	if (nargin == 0) | isempty(a)		W = mapping(mfilename); 		W = setname(W,'GTM');		return; 	end	% Prevent annoying messages: we will tell the user about any problems.		warning off;	    t = +a'; [d,N] = size(t); [m,k] = size(a);     % If we're to apply a trained mapping, unpack its parameters.        if (ismapping(arg2))        w = arg2; data = getdata(w);        K = data{1}; M = data{2};        W = data{3}; sigma = data{4}; mapto = data{5};    else        K = arg2;    end;        % Create a KK-dimensional grid with dimensions K(1), K(2), ... of 	% D-dimensional grid points and store it as a D x KK matrix X. Do the	% same for the basis function centers PHI_MU, with grid dimensions M(1), ...	K = reshape(K,1,prod(size(K)));		% Turn into vectors.	M = reshape(M,1,prod(size(M)));	% Check: either K or M should be a vector, or both should be vectors of	% the same length.	if (length(K) > 1) & (length(M) == 1)		M = M * ones(1,length(K));	elseif (length(M) > 1) & (length(K) == 1)		K = K * ones(1,length(M));	elseif (length(K) ~= length(M))		error ('Length of vectors K and M should be equal, or K and/or M should be scalar.');	end;		D = length(K); KK = prod(K); MM = prod(M);	if (D > d)		error ('Length of vectors K and M should be <= the data dimensionality.');    end;        x         = makegrid(K,D);				% Grid points.	phi_mu    = makegrid(M,D);				% Basis function centers.	phi_sigma = 2/(mean(M)-1);				% Basis function widths.	% Pre-calculate Phi.	for j = 1:KK  	 	for i = 1:MM    	    Phi(i,j) = exp(-(x(:,j)-phi_mu(:,i))'*(x(:,j)-phi_mu(:,i))/(phi_sigma^2));	    end;    end;	    if (~ismapping(arg2))  % Train mapping.		tries = 0; retry = 1;		while ((retry == 1) & (tries <= 5))	            % Initialisation.			    ptx = zeros(KK,N);			R   = (1/KK)*ones(KK,N);				C = cov(t'); [U,DD] = eig(C); [dummy,ind] = sort(-diag(DD));			W = U(:,ind(1:D))*x*pinv(Phi);			if (size(C,1) > D)				sigma = sqrt(DD(D+1,D+1));			else				sigma = 1/mean(M);			end;	            done = 0; iter = 0; retry = 0; likelihood = 1.0e20;	            while ((~done) & (~retry))	      		    iter = iter + 1;          		done = 1;			  	    factor1 = (1/(2*pi*sigma^2))^(d/2);		  	    factor2 = (-1/(2*sigma^2));				WPhi    = W*Phi;					for i = 1:KK					ptx(i,:) = factor1 * exp(factor2*sum((WPhi(:,i)*ones(1,N)-t).^2));				end;					if (~retry)						s = sum(ptx); s(find(s==0)) = realmin;		% Prevent divide-by-zero.					R = ptx ./ (ones(size(ptx,1),1)*s);					G = diag(sum(R'));	                  	% M-step #1 (eqn. 12)          	        W = (inv(Phi*G*Phi' + reg*eye(MM))*Phi*R*t')';	                  	% M-step #1 (eqn. 13)          						s = 0; WPhi = W*Phi;					for i = 1:KK						s = s + sum(R(i,:).*sum((WPhi(:,i)*ones(1,N)-t).^2));					end;                  	sigma = sqrt((1/(N*d)) * s);						% Re-calculate log-likelihood.	                   	prev_likelihood = likelihood; likelihood = sum(log(mean(ptx)+realmin));						if (rem (iter,step) == 0)                        prwarning (10, sprintf('[%3d] L: %2.2f (change: %2.2e)', ...                            iter, likelihood, abs ((likelihood - prev_likelihood)/likelihood)));					end;						% Continue?	                  	done = (abs ((likelihood - prev_likelihood)/likelihood) < epsilon);      			    done = (done | (iter > maxiter));      			    if (~isfinite(likelihood))      			        prwarning(3,'Problem is poorly conditioned, retrying');      			        retry = 1; tries = tries + 1;      			    end;      			          	        end;			end;        end;			L = likelihood;			if (~retry)    		w = mapping(mfilename,'trained',{K,M,W,sigma,mapto},[],k,D);		    w = setname(w,'GTM');	    else            prwarning(3,'Problem is too poorly conditioned, giving up');            prwarning(3,'Consider lowering K and M or increasing REG');	        w = [];	    end;	        else    % Apply mapping.            factor1 = (1/(2*pi*sigma^2))^(d/2);		factor2 = (-1/(2*sigma^2));		WPhi    = W*Phi;			for i = 1:KK		    ptx(i,:) = factor1 * exp(factor2*sum((WPhi(:,i)*ones(1,N)-t).^2));		end;			s = sum(ptx); s(find(s==0)) = realmin;		% Prevent divide-by-zero.		R = ptx ./ (ones(size(ptx,1),1)*s);		switch(mapto)		    case 'mean',		        out = (x*R)';		    case 'mode',		        [dummy,ind] = max(R); out = x(:,ind)';            otherwise,		        error ('unknown mapping type: should be mean or mode')		 end;		 w = setdata(a,out,getlabels(w));    end;        warning on;    return% GRID = MAKEGRID (K,D)%% Create a KK = prod(K)-dimensional grid with dimensions K(1), K(2), ... of % D-dimensional uniformly spaced grid points on [0,1]^prod(K), and store it % as a D x KK matrix X.function grid = makegrid (K,D)	KK = prod(K);	for h = 1:D		xx{h} = 0:(1/(K(h)-1)):1;	% Support point means	end;	% Do that voodoo / that you do / so well...    if (D==1)  	    xm = xx;    else  	    cmd = '[';        for h = 1:D-1, cmd = sprintf ('%sxm{%d}, ', cmd, h); end;         cmd = sprintf ('%sxm{%d}] = ndgrid(', cmd, D);        for h = 1:D-1, cmd = sprintf ('%sxx{%d}, ', cmd, h); end;         cmd = sprintf ('%sxx{%d});', cmd, D); eval(cmd);    end;    	cmd = 'mm = zeros(D, ';	for h = 1:D-1, cmd = sprintf ('%s%d, ', cmd, K(h)); end; 	cmd = sprintf ('%s%d);', cmd, K(D)); eval (cmd);	for h = 1:D		cmd = sprintf ('mm(%d,', h);		for g = 1:D-1, cmd = sprintf ('%s:,', cmd); end;         cmd = sprintf ('%s:) = xm{%d};', cmd, h); eval (cmd);	end;	grid = reshape(mm,D,KK);return

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美一区二区三区在线老狼| 国产日韩欧美在线一区| 国产呦精品一区二区三区网站| 国产精品理论在线观看| 欧美一区日韩一区| 白白色亚洲国产精品| 日本成人在线一区| 最新热久久免费视频| 精品福利av导航| 欧美巨大另类极品videosbest | 欧美精品一区二区高清在线观看| 99麻豆久久久国产精品免费优播| 美女一区二区在线观看| 一片黄亚洲嫩模| 久久久天堂av| 欧美一区二区三区小说| 色伊人久久综合中文字幕| 国产高清精品在线| 麻豆免费看一区二区三区| 亚洲线精品一区二区三区| 国产精品九色蝌蚪自拍| 久久网这里都是精品| 日韩午夜电影av| 欧美日韩精品一区视频| 色婷婷久久一区二区三区麻豆| 国产福利一区二区三区视频在线| 麻豆精品视频在线观看免费| 香蕉成人啪国产精品视频综合网| 亚洲人成7777| 中文字幕一区二区不卡 | 久久这里都是精品| 91精品国产91久久久久久最新毛片 | 国产网站一区二区| 精品乱人伦小说| 欧美一级黄色录像| 在线电影一区二区三区| 欧美色爱综合网| 欧美亚洲日本一区| 色老汉av一区二区三区| 色综合色狠狠综合色| av电影天堂一区二区在线观看| 国产suv一区二区三区88区| 国产美女av一区二区三区| 经典三级视频一区| 韩国欧美国产1区| 国产一区日韩二区欧美三区| 国产在线麻豆精品观看| 另类小说欧美激情| 国产一区视频在线看| 国产一区二区伦理片| 国产成人精品一区二区三区四区| 国产美女在线观看一区| 国产成人aaa| av午夜精品一区二区三区| 91香蕉视频在线| 欧洲精品一区二区| 欧美久久久久久久久| 欧美成人激情免费网| 精品久久99ma| 国产拍揄自揄精品视频麻豆| 欧美激情一区二区三区四区| 亚洲色图19p| 亚洲va国产天堂va久久en| 日韩av成人高清| 国产麻豆视频一区二区| aaa国产一区| 欧美影院精品一区| 91精品国产综合久久久蜜臀粉嫩| 精品国产凹凸成av人导航| 国产三级欧美三级| 亚洲另类中文字| 日本特黄久久久高潮| 国产成人综合亚洲网站| 99天天综合性| 欧美一区三区二区| 国产精品三级av在线播放| 一区二区三区欧美日| 美腿丝袜在线亚洲一区| 成人免费视频一区| 欧美美女一区二区在线观看| 久久综合999| 亚洲精品一二三四区| 美国毛片一区二区三区| 粉嫩一区二区三区在线看| 欧美午夜精品久久久久久孕妇| 日韩午夜av一区| 亚洲欧洲成人自拍| 蜜桃视频在线观看一区二区| 波多野洁衣一区| 日韩欧美一区在线| 亚洲欧美怡红院| 久久av中文字幕片| 色婷婷久久久综合中文字幕| 欧美电影免费观看高清完整版在线| 中文乱码免费一区二区| 日本欧美加勒比视频| 99精品视频在线观看免费| 日韩欧美一级二级三级| 亚洲精品视频在线| 国产精品99久久久久久似苏梦涵| 欧美午夜精品一区| 国产欧美一区二区三区在线老狼| 午夜精品久久久久久久久久 | 在线观看91视频| 国产亚洲一区字幕| 青青草国产成人99久久| 色婷婷av久久久久久久| 国产亚洲精品福利| 免费高清在线视频一区·| 91久久线看在观草草青青| 国产欧美视频在线观看| 免费成人美女在线观看| 色婷婷国产精品久久包臀| 亚洲国产高清不卡| 国产制服丝袜一区| 日韩一区二区免费电影| 亚洲成人免费在线观看| 色综合色狠狠综合色| 欧美激情自拍偷拍| 国产一区不卡精品| 欧美精品一区二区三区视频| 日韩vs国产vs欧美| 欧美日韩亚州综合| 亚洲一区视频在线观看视频| 91在线观看下载| 国产欧美日韩综合| 国产精品18久久久| 久久丝袜美腿综合| 激情综合色综合久久| 欧美成人一级视频| 久久成人免费日本黄色| 日韩欧美国产小视频| 久久精品国产在热久久| 51精品秘密在线观看| 日韩成人免费看| 日韩亚洲欧美高清| 麻豆精品视频在线观看| 欧美一区二区三区影视| 日本人妖一区二区| 91精品国产乱码久久蜜臀| 午夜精品一区二区三区电影天堂 | 国产在线国偷精品产拍免费yy | 日韩视频永久免费| 美女任你摸久久 | 制服视频三区第一页精品| 婷婷综合久久一区二区三区| 9191久久久久久久久久久| 日欧美一区二区| 日韩免费观看2025年上映的电影| 久久精品噜噜噜成人av农村| 欧美tickling网站挠脚心| 国产在线精品一区二区三区不卡 | 欧美国产在线观看| 91在线国产观看| 一区二区在线观看不卡| 欧美性淫爽ww久久久久无| 水野朝阳av一区二区三区| 日韩欧美一区二区不卡| 黑人精品欧美一区二区蜜桃| 国产欧美一区二区精品性色超碰| 成人av动漫在线| 亚洲高清中文字幕| 日韩亚洲国产中文字幕欧美| 国产成人精品亚洲777人妖| 亚洲欧洲av色图| 欧美日韩国产片| 精品一二三四在线| 亚洲欧洲成人自拍| 555www色欧美视频| 国产成人在线观看| 亚洲精品日韩综合观看成人91| 91精品一区二区三区久久久久久| 精品一区二区三区免费观看 | 久久精品在线观看| 91网站最新地址| 日韩精品一区第一页| 国产日韩欧美制服另类| 91久久精品午夜一区二区| 蜜桃av一区二区在线观看| 亚洲国产成人午夜在线一区| 欧美日韩国产一区| 国内精品不卡在线| 亚洲精品乱码久久久久| 精品久久久久久久久久久久包黑料| 成人毛片视频在线观看| 三级欧美在线一区| 国产精品每日更新在线播放网址 | 国产精品传媒入口麻豆| 欧美日韩国产小视频在线观看| 国产久卡久卡久卡久卡视频精品| 亚洲精品国产无天堂网2021| 精品国产乱码久久久久久久久| 色中色一区二区| 精品一区二区日韩| 亚洲亚洲人成综合网络| 久久久久久电影| 7777精品伊人久久久大香线蕉经典版下载| 国产成人丝袜美腿| 青椒成人免费视频| 一区二区三区精品视频|