?? kmeans.m
字號:
%KMEANS k-means clustering%% [LABELS,A] = KMEANS(A,K,MAXIT,INIT,FID)%% INPUT% A Matrix or dataset% K Number of clusters to find (optional; default: 2)% MAXIT maximum number of iterations (optional; default: 50)% INIT Labels for initialisation, or% 'rand' : take at random K objects as initial means, or% 'kcentres' : use KCENTRES for initialisation (default)% FID File ID to write progress to (default [], see PRPROGRESS)%% OUTPUT% LABELS Cluster assignments, 1..K% A Dataset with original data and labels ASSIGN% % DESCRIPTION% K-means clustering of data vectors in A. %% SEE ALSO% DATASETS, HCLUST, KCENTRES, MODESEEK, EMCLUST, PRPROGRESS% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: kmeans.m,v 1.12 2004/10/21 15:01:31 duin Exp $function [assign,a] = kmeans(a,kmax,maxit,init,fid) prtrace(mfilename); n_ini = 100; % Maximum size of subset to use for initialisation. if (nargin < 2) | isempty(kmax) kmax = 2; prwarning(3,'No K supplied, assuming K = 2.'); end if nargin < 3 | isempty(maxit) maxit = 50; end if nargin < 4 | isempty(init) init = 'kcentres'; end if nargin < 5 fid = []; end % Create dataset with all equal labels and no priors. a = dataset(a); islabtype(a,'crisp'); m = size(a,1); a=set(a,'labels',ones(m,1),'lablist',[1:kmax]','prior',[]); % for speed n_ini = max(n_ini,kmax*5); % initialisation needs sufficient samples prprogress(fid,'\nkmeans clustering procedure\n') % Initialise by performing KCENTRES on... if (size(init,1) == 1) & strcmp(init,'kcentres') & (m > n_ini) prwarning(1,'Initializing by performing KCENTRES on subset of %d samples.', n_ini); b = +gendat(a,n_ini); % ... a random subset of A. d = +distm(b); assign = kcentres(d,kmax,[],fid); w = nmc(dataset(b,assign)); % Initial partition W and assignments ASSIGN. elseif (size(init,1) == 1) & strcmp(init,'kcentres') prwarning(1,'Initializing by performing KCENTRES on training set.'); d = +distm(a); % ... the entire set A. assign = kcentres(d,kmax,[],fid); w = nmc(dataset(a,assign)); % mapping trained on the complete dataset elseif (size(init,1) == 1) & strcmp(init,'rand') prwarning(1,'Initializing by randomly selected objects'); R = randperm(m); w = nmc(dataset(a(R(1:kmax),:),[1:kmax]')); % mapping trained on kmax random samples elseif (size(init,1) == m) assign = renumlab(init); kmax = max(assign); prwarning(1,'Initializing by given labels, k = %i',kmax); w = nmc(dataset(a,assign)); else error('Wrong initialisation supplied') end assign = labeld(a*w); tmp_assign = zeros(m,1); % Allocate temporary array. % Main loop, while assignments change it=1; % number of iterations ndif = 1; while (it<maxit) & (ndif > 0) tmp_assign = assign; % Remember previous assignments. a = setnlab(a,assign); w = a * nmc; % Re-partition the space by assigning samples to nearest mean. assign = a * w * labeld; % Re-calculate assignments. it = it+1; % increase the iteration counter ndif = sum(tmp_assign ~= assign); prprogress(fid,' iter: %i changes: %i\n',it,ndif); end if it>=maxit prwarning(1,['No convergence reached before the maximum number of %d iterations passed. ' ... 'The last result was returned.'], maxit); end prprogress(fid,'kmeans finished\n') return;
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -