?? pcldc.m
字號:
%PCLDC Linear classifier using PC expansion on the joint data.% % W = PCLDC(A,N)% W = PCLDC(A,ALF)%% INPUT% A Dataset% N Number of eigenvectors% ALF Total explained variance (default: ALF = 0.9)%% OUTPUT% W Mapping% % DESCRIPTION% Finds the linear discriminant function W for the dataset A % computing the LDC on a projection of the data on the first N % eigenvectors of the total dataset (Principle Component Analysis).% % When ALF is supplied the number of eigenvalues is chosen such that at % least a part ALF of the total variance is explained. % % SEE ALSO% MAPPINGS, DATASETS, KLLDC, KLM, FISHERM% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: pcldc.m,v 1.7 2003/11/22 23:20:38 bob Exp $function W = pcldc(a,n) prtrace(mfilename); if nargin < 2, n = []; end if nargin == 0 | isempty(a) W = mapping('pcldc',{n}); W = setname(W,'PC Bayes-Normal-1'); return; end islabtype(a,'crisp','soft'); isvaldset(a,2,2); % at least 2 object per class, 2 classes % Make a sequential classifier combining PCA and LDC: v = pca(a,n); W = v*ldc(a*v); W = setname(W,'PC Bayes-Normal-1'); W = setcost(W,a);return
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -