?? svo_nu.m
字號:
%SVO_NU Support Vector Optimizer: NU algorithm%% [V,J,C] = SVO(K,NLAB,NU,PD)%% INPUT% K Similarity matrix% NLAB Label list consisting of -1/+1% NU Regularization parameter (0 < NU < 1): expected fraction of SV (optional; default: 0.25)%% PD Do or do not the check of the positive definiteness (optional; default: 1 (to do))%% OUTPUT% V Vector of weights for the support vectors% J Index vector pointing to the support vectors% C Equivalent C regularization parameter of SVM-C algorithm%% DESCRIPTION% A low level routine that optimizes the set of support vectors for a 2-class% classification problem based on the similarity matrix K computed from the% training set. SVO is called directly from SVC. The labels NLAB should indicate % the two classes by +1 and -1. Optimization is done by a quadratic programming. % If available, the QLD function is used, otherwise an appropriate Matlab routine.%% NU is bounded from above by NU_MAX = (1 - ABS(Lp-Lm)/(Lp+Lm)), where% Lp (Lm) is the number of positive (negative) samples. If NU > NU_MAX is supplied % to the routine it will be changed to the NU_MAX.%% If NU is less than some NU_MIN which depends on the overlap between classes % algorithm will typically take long time to converge (if at all). % So, it is advisable to set NU larger than expected overlap.%% Weights V are rescaled in a such manner as if they were returned by SVO with the parameter C.%% SEE ALSO% SVC_NU, SVO, SVC% Copyright: S.Verzakov, s.verzakov@ewi.tudelft.nl % Based on SVO.M by D.M.J. Tax, D. de Ridder, R.P.W. Duin% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: svo_nu.m,v 1.1 2004/10/21 15:54:27 duin Exp $function [v,J,C] = svo_nu(K,y,nu,pd) prtrace(mfilename); if (nargin < 4) pd = 1; end if (nargin < 3) prwarning(3,'Third parameter (nu) not specified, assuming 0.25.'); nu = 0.25; end nu_max = 1 - abs(nnz(y == 1) - nnz(y == -1))/length(y); if nu > nu_max prwarning(3,['nu==' num2str(nu) ' is not feasible; set to ' num2str(nu_max)]); nu = nu_max; end vmin = 1e-9; % Accuracy to determine when an object becomes the support object. % Set up the variables for the optimization. n = size(K,1); D = (y*y').*K; f = zeros(1,n); A = [ones(1,n); y']; b = [nu*n; 0]; lb = zeros(n,1); ub = ones(n,1); p = rand(n,1); if pd % Make the kernel matrix K positive definite. i = -30; while (pd_check (D + (10.0^i) * eye(n)) == 0) i = i + 1; end if (i > -30), prwarning(1,'K is not positive definite. The diagonal is regularized by 10.0^(%d)*I',i); end i = i+2; D = D + (10.0^(i)) * eye(n); end % Minimization procedure initialization: % 'qp' minimizes: 0.5 x' D x + f' x % subject to: Ax <= b % if (exist('qld') == 3) v = qld (D, f, -A, b, lb, ub, p, 2); elseif (exist('quadprog') == 2) prwarning(1,'QLD not found, the Matlab routine QUADPROG is used instead.') v = quadprog(D, f, [], [], A, b, lb, ub); else prwarning(1,'QLD not found, the Matlab routine QP is used instead.') verbos = 0; negdef = 0; normalize = 1; v = qp(D, f, A, b, lb, ub, p, 1, verbos, negdef, normalize); end % Find all the support vectors. J = find(v > vmin); % First find the SV on the boundary I = find((v > vmin) & (v < n*nu-vmin)); Ip = find(y(I) == 1); Im = find(y(I) == -1); if (isempty(v) | isempty(Ip) | isempty(Im)) %error('Quadratic Optimization failed. Pseudo-Fisher is computed instead.'); prwarning(1,'Quadratic Optimization failed. Pseudo-Fisher is computed instead.'); v = pinv([K ones(n,1)])*y; J = [1:n]'; C = nan; return; end v = y.*v; wxI = K(I,J)*v(J); wxIp = mean(wxI(Ip),1); wxIm = mean(wxI(Im),1); rho = 0.5*(wxIp-wxIm); %b = - (0.5/rho)*(wxIp+wxIm); b = mean(y(I) - wxI/rho); v = [v(J)/rho; b]; C = 1/rho; return;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -