亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? denoi_bls_gsm_band.m

?? 基于小波域隱馬爾可夫模型的圖像降噪
?? M
字號:
function x_hat = denoi_BLS_GSM_band(y,block,noise,prnt,covariance,optim,sig);

% It solves for the BLS global optimum solution, using a flat (pseudo)prior for log(z)
% 		  x_hat = denoi_BLS_GSM_band(y,block,noise,prnt,covariance,optim,sig);
%
%       prnt:  Include/ Not Include parent (1/0)
%       covariance: Include / Not Include covariance in the GSM model (1/0)
%       optim: BLS / MAP-Wiener(2-step) (1/0)

% JPM, Univ. de Granada, 5/02
% Last revision: JPM, 4/03


if ~exist('covariance'),
        covariance = 1;
end

if ~exist('optim'),
        optim = 1;
end

[nv,nh,nb] = size(y);

nblv = nv-block(1)+1;	% Discard the outer coefficients 
nblh = nh-block(2)+1;   % for the reference (centrral) coefficients (to avoid boundary effects)
nexp = nblv*nblh;			% number of coefficients considered
zM = zeros(nv,nh);		% hidden variable z
x_hat = zeros(nv,nh);	% coefficient estimation
N = prod(block) + prnt; % size of the neighborhood

Ly = (block(1)-1)/2;		% block(1) and block(2) must be odd!
Lx = (block(2)-1)/2;
if (Ly~=floor(Ly))|(Lx~=floor(Lx)),
   error('Spatial dimensions of neighborhood must be odd!');
end   
cent = floor((prod(block)+1)/2);	% reference coefficient in the neighborhood 
                                 % (central coef in the fine band)

Y = zeros(nexp,N);		% It will be the observed signal (rearranged in nexp neighborhoods)
W = zeros(nexp,N);		% It will be a signal with the same autocorrelation as the noise

foo = zeros(nexp,N);

% Compute covariance of noise from 'noise'
n = 0;
for ny = -Ly:Ly,	% spatial neighbors
	for nx = -Lx:Lx,
		n = n + 1;
		foo = shift(noise(:,:,1),[ny nx]);
		foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh);
		W(:,n) = vector(foo);
	end
end
if prnt,	% parent
	n = n + 1;
	foo = noise(:,:,2);
	foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh);
	W(:,n) = vector(foo);
end

C_w = innerProd(W)/nexp;
sig2 = mean(diag(C_w(1:N-prnt,1:N-prnt)));	% noise variance in the (fine) subband

clear W;
if ~covariance,
   if prnt,
        C_w = diag([sig2*ones(N-prnt,1);C_w(N,N)]);
   else
        C_w = diag(sig2*ones(N,1));
   end
end    


% Rearrange observed samples in 'nexp' neighborhoods 
n = 0;
for ny=-Ly:Ly,	% spatial neighbors
	for nx=-Lx:Lx,
		n = n + 1;
		foo = shift(y(:,:,1),[ny nx]);
		foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh);
		Y(:,n) = vector(foo);
	end
end
if prnt,	% parent
	n = n + 1;
	foo = y(:,:,2);
	foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh);
	Y(:,n) = vector(foo);
end
clear foo

% For modulating the local stdv of noise
if exist('sig') & prod(size(sig))>1,
    sig = max(sig,sqrt(1/12));   % Minimum stdv in quantified (integer) pixels
    subSampleFactor = log2(sqrt(prod(size(sig))/(nv*nh)));
    zW = blurDn(reshape(sig, size(zM)*2^subSampleFactor)/2^subSampleFactor,subSampleFactor);
    zW = zW.^2;
    zW = zW/mean2(zW); % Expectation{zW} = 1
    z_w = vector(zW(Ly+1:Ly+nblv,Lx+1:Lx+nblh));
end    

[S,dd] = eig(C_w);
S = S*real(sqrt(dd));	% S*S' = C_w
iS = pinv(S);
clear noise

C_y = innerProd(Y)/nexp;
sy2 = mean(diag(C_y(1:N-prnt,1:N-prnt))); % observed (signal + noise) variance in the subband
C_x = C_y - C_w;			% as signal and noise are assumed to be independent
[Q,L] = eig(C_x);
% correct possible negative eigenvalues, without changing the overall variance
L = diag(diag(L).*(diag(L)>0))*sum(diag(L))/(sum(diag(L).*(diag(L)>0))+(sum(diag(L).*(diag(L)>0))==0));
C_x = Q*L*Q';
   
sx2 = sy2 - sig2;			% estimated signal variance in the subband
sx2 = sx2.*(sx2>0); % + (sx2<=0); 
if ~covariance,
   if prnt,
        C_x = diag([sx2*ones(N-prnt,1);C_x(N,N)]);
   else
        C_x = diag(sx2*ones(N,1));
   end
end    
[Q,L] = eig(iS*C_x*iS');	 	% Double diagonalization of signal and noise
la = diag(L);						% eigenvalues: energy in the new represetnation.
la = real(la).*(real(la)>0);

% Linearly transform the observations, and keep the quadratic values (we do not model phase)

V = Q'*iS*Y';
clear Y;
V2 = (V.^2).';
M = S*Q;
m = M(cent,:);


% Compute p(Y|log(z))

if 1,   % non-informative prior
    lzmin = -20.5;
    lzmax = 3.5;
    step = 2;
else    % gamma prior for 1/z
    lzmin = -6;
    lzmax = 4;
    step = 0.5;
end    

lzi = lzmin:step:lzmax;
nsamp_z = length(lzi);
zi = exp(lzi);
 

laz = la*zi;
p_lz = zeros(nexp,nsamp_z);
mu_x = zeros(nexp,nsamp_z);

if ~exist('z_w'),       % Spatially invariant noise
    pg1_lz = 1./sqrt(prod(1 + laz,1));	% normalization term (depends on z, but not on Y)
    aux = exp(-0.5*V2*(1./(1+laz)));
    p_lz = aux*diag(pg1_lz);				% That gives us the conditional Gaussian density values
    										% for the observed samples and the considered samples of z
    % Compute mu_x(z) = E{x|log(z),Y}
    aux = diag(m)*(laz./(1 + laz));	% Remember: laz = la*zi
    mu_x = V.'*aux;			% Wiener estimation, for each considered sample of z
else                    % Spatially variant noise
    rep_z_w = repmat(z_w, 1, N); 
    for n_z = 1:nsamp_z,
        rep_laz = repmat(laz(:,n_z).',nexp,1);
        aux = rep_laz + rep_z_w;     % lambda*z_u + z_w
        p_lz(:,n_z) = exp(-0.5*sum(V2./aux,2))./sqrt(prod(aux,2));
        % Compute mu_x(z) = E{x|log(z),Y,z_w}
        aux = rep_laz./aux;
        mu_x(:,n_z) = (V.'.*aux)*m.';
    end
end    
                                            
                                            
[foo, ind] = max(p_lz.');	% We use ML estimation of z only for the boundaries.
clear foo
if prod(size(ind)) == 0,
	z = ones(1,size(ind,2));
else
	z = zi(ind).';				
end

clear V2 aux

% For boundary handling

uv=1+Ly;
lh=1+Lx;
dv=nblv+Ly;
rh=nblh+Lx;
ul1=ones(uv,lh);
u1=ones(uv-1,1);
l1=ones(1,lh-1);
ur1=ul1;
dl1=ul1;
dr1=ul1;
d1=u1;
r1=l1;

zM(uv:dv,lh:rh) = reshape(z,nblv,nblh);

% Propagation of the ML-estimated z to the boundaries

% a) Corners
zM(1:uv,1:lh)=zM(uv,lh)*ul1;
zM(1:uv,rh:nh)=zM(uv,rh)*ur1;
zM(dv:nv,1:lh)=zM(dv,lh)*dl1;
zM(dv:nv,rh:nh)=zM(dv,rh)*dr1;
% b) Bands
zM(1:uv-1,lh+1:rh-1)=u1*zM(uv,lh+1:rh-1);
zM(dv+1:nv,lh+1:rh-1)=d1*zM(dv,lh+1:rh-1);
zM(uv+1:dv-1,1:lh-1)=zM(uv+1:dv-1,lh)*l1;
zM(uv+1:dv-1,rh+1:nh)=zM(uv+1:dv-1,rh)*r1;

% We do scalar Wiener for the boundary coefficients
if exist('z_w'),
    x_hat = y(:,:,1).*(sx2*zM)./(sx2*zM + sig2*zW);
else        
    x_hat = y(:,:,1).*(sx2*zM)./(sx2*zM + sig2);
end


% Prior for log(z)

p_z = ones(nsamp_z,1);    % Flat log-prior (non-informative for GSM)
p_z = p_z/sum(p_z);


% Compute p(log(z)|Y) from p(Y|log(z)) and p(log(z)) (Bayes Rule)

p_lz_y = p_lz*diag(p_z);
clear p_lz
if ~optim,
   p_lz_y = (p_lz_y==max(p_lz_y')'*ones(1,size(p_lz_y,2))); 	% ML in log(z): it becomes a delta function																	% at the maximum
end    
aux = sum(p_lz_y, 2);
if any(aux==0),
    foo = aux==0;
    p_lz_y = repmat(~foo,1,nsamp_z).*p_lz_y./repmat(aux + foo,1,nsamp_z)...
        + repmat(foo,1,nsamp_z).*repmat(p_z',nexp,1); 	% Normalizing: p(log(z)|Y)
else
    p_lz_y = p_lz_y./repmat(aux,1,nsamp_z); 	% Normalizing: p(log(z)|Y)
end    
clear aux;

% Compute E{x|Y} = int_log(z){ E{x|log(z),Y} p(log(z)|Y) d(log(z)) }

aux = sum(mu_x.*p_lz_y, 2);

x_hat(1+Ly:nblv+Ly,1+Lx:nblh+Lx) = reshape(aux,nblv,nblh);

clear mu_x p_lz_y aux

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品日产卡一卡二卡麻豆| 麻豆精品一区二区综合av| 欧美美女一区二区三区| 另类的小说在线视频另类成人小视频在线 | 一区二区三区在线视频观看| 欧美一区二区精品久久911| 99久久久无码国产精品| 黄页网站大全一区二区| 香蕉成人伊视频在线观看| 国产精品日韩成人| 精品国产百合女同互慰| 欧美色窝79yyyycom| 成人美女视频在线看| 久久国产综合精品| 午夜国产不卡在线观看视频| 成人免费在线观看入口| 久久久精品天堂| 日韩午夜av一区| 欧美无乱码久久久免费午夜一区| 成人精品高清在线| 国产精品一级在线| 精品午夜一区二区三区在线观看| 视频一区二区欧美| 一区二区三区视频在线观看| 中文字幕亚洲欧美在线不卡| 中文字幕一区二区日韩精品绯色| 久久久久高清精品| 精品国产乱码久久久久久久久 | 久久奇米777| 日韩欧美国产系列| 91.xcao| 91极品视觉盛宴| 91麻豆swag| 91麻豆视频网站| 91网上在线视频| 色综合久久88色综合天天6 | 色诱视频网站一区| 99精品欧美一区二区蜜桃免费| 国产精品18久久久久久久久| 久久se精品一区二区| 免费在线观看一区| 老司机精品视频导航| 免费日韩伦理电影| 免费日本视频一区| 精品写真视频在线观看| 国产真实乱对白精彩久久| 黄色成人免费在线| 国产精品99久久久久久宅男| 丁香桃色午夜亚洲一区二区三区| 国产.欧美.日韩| 成人av在线播放网站| 99re成人在线| 欧美日韩中文字幕一区二区| 91行情网站电视在线观看高清版| 国产日韩欧美综合在线| 欧美国产在线观看| 国产精品另类一区| 亚洲激情六月丁香| 亚洲1区2区3区视频| 日本aⅴ免费视频一区二区三区| 久久99国内精品| 国产成人午夜视频| 日本高清免费不卡视频| 欧美日韩一区二区不卡| 日韩精品一区二区三区在线播放| 精品国产123| 国产精品成人免费| 亚洲成人一区在线| 黑人巨大精品欧美一区| 99精品视频中文字幕| 欧美久久久久久蜜桃| 精品国产免费一区二区三区香蕉 | 日韩 欧美一区二区三区| 日本一区二区三区四区| 麻豆久久久久久久| 久久精子c满五个校花| 日本一区二区三区dvd视频在线| 国产精品福利影院| 亚洲成人www| 国产乱色国产精品免费视频| eeuss鲁一区二区三区| 欧美日韩不卡一区二区| 国产亚洲一二三区| 亚洲精品国产品国语在线app| 青草国产精品久久久久久| 成人爽a毛片一区二区免费| 欧美午夜影院一区| 欧美国产日韩一二三区| 天天爽夜夜爽夜夜爽精品视频| 成人性生交大片免费看中文| 欧美日韩一级视频| 国产精品美女久久久久av爽李琼| 午夜欧美大尺度福利影院在线看| 国产suv一区二区三区88区| 欧美日产国产精品| 国产精品高潮久久久久无| 蜜桃视频一区二区| 91久久线看在观草草青青| 国产资源在线一区| 狂野欧美性猛交blacked| 色美美综合视频| 久久久久久久久久久99999| 午夜激情一区二区| av在线不卡电影| 久久亚洲一区二区三区四区| 亚洲图片欧美综合| 成人av动漫在线| 26uuuu精品一区二区| 丝袜美腿亚洲色图| 色噜噜狠狠成人网p站| 亚洲国产一区二区在线播放| eeuss鲁片一区二区三区在线看| 精品久久久三级丝袜| 日日夜夜精品视频免费| 一本大道久久a久久综合| 国产欧美日韩在线视频| 久久国产精品露脸对白| 欧美老肥妇做.爰bbww| 一区二区视频在线看| 99久久国产综合精品女不卡| 久久精品夜色噜噜亚洲aⅴ| 久久精品国产色蜜蜜麻豆| 欧美久久久一区| 五月天亚洲婷婷| 欧美中文字幕久久| 亚洲激情图片qvod| 日本精品一区二区三区高清| 国产精品国模大尺度视频| 丁香婷婷深情五月亚洲| 国产精品视频线看| 国产成人av网站| 亚洲国产精品黑人久久久| 国产ts人妖一区二区| 国产精品网站一区| 成人高清视频在线| 国产精品情趣视频| 99亚偷拍自图区亚洲| 中文字幕永久在线不卡| 99久久综合国产精品| 日韩理论片在线| 在线中文字幕一区| 亚洲一区免费观看| 欧美日本乱大交xxxxx| 日韩av网站免费在线| 日韩一级片在线播放| 精品系列免费在线观看| 久久你懂得1024| 成人久久18免费网站麻豆| 国产精品乱人伦中文| 一本色道久久综合狠狠躁的推荐| 亚洲精品伦理在线| 欧美欧美欧美欧美| 日韩av午夜在线观看| 九一九一国产精品| 久久久久久麻豆| 国产成人精品在线看| 17c精品麻豆一区二区免费| 91麻豆免费观看| 肉丝袜脚交视频一区二区| 精品三级在线观看| www.亚洲色图.com| 一级特黄大欧美久久久| 欧美一区二区三区视频| 国产美女主播视频一区| 中文字幕视频一区二区三区久| 色噜噜狠狠色综合欧洲selulu| 日韩影院免费视频| 国产婷婷色一区二区三区四区 | 日本韩国一区二区| 天堂资源在线中文精品| 日韩免费福利电影在线观看| 丰满少妇在线播放bd日韩电影| 亚洲精品日日夜夜| 日韩欧美一区二区视频| 成人激情小说乱人伦| 亚洲第一福利视频在线| 久久久久久夜精品精品免费| 色综合色狠狠天天综合色| 日韩精品亚洲专区| 国产精品少妇自拍| 欧美嫩在线观看| 国产91富婆露脸刺激对白| 亚洲成人免费av| 国产午夜三级一区二区三| 欧美性色欧美a在线播放| 国产一区二区美女诱惑| 一区二区三区欧美| 国产视频一区在线播放| 欧美日韩一区二区欧美激情| 国产成人福利片| 免费精品视频在线| 日韩一区在线免费观看| 精品久久五月天| 欧美日韩一区二区在线观看| 成人网男人的天堂| 另类小说图片综合网| 亚洲小说欧美激情另类| 国产精品久久久久久一区二区三区| 欧美日韩国产大片| 色综合久久久久网|