亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? c_jacobi01.c

?? program to solve a finite difference discretization of Helmholtz equation : (
?? C
字號:
/* ***********************************************************************  This program is part of the        OpenMP Source Code Repository        http://www.pcg.ull.es/ompscr/        e-mail: ompscr@etsii.ull.es   Copyright (c) 2004, OmpSCR Group   All rights reserved.   Redistribution and use in source and binary forms, with or without modification,    are permitted provided that the following conditions are met:     * Redistributions of source code must retain the above copyright notice,        this list of conditions and the following disclaimer.      * Redistributions in binary form must reproduce the above copyright notice,        this list of conditions and the following disclaimer in the documentation        and/or other materials provided with the distribution.      * Neither the name of the University of La Laguna nor the names of its contributors        may be used to endorse or promote products derived from this software without        specific prior written permission.    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.   IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,    INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,    OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY    OF SUCH DAMAGE.  FILE:              c_jacobi01.c  VERSION:           1.1  DATE:              Oct 2004  AUTHORS:           Author:       Joseph Robicheaux, Kuck and Associates, Inc. (KAI), 1998                     Modified:     Sanjiv Shah,       Kuck and Associates, Inc. (KAI), 1998                     This version: Dieter an Mey,     Aachen University (RWTH), 1999 - 2003                                   anmey@rz.rwth-aachen.de                                   http://www.rwth-aachen.de/People/D.an.Mey.html  COMMENTS TO:       ompscr@etsii.ull.es  DESCRIPTION:       program to solve a finite difference discretization of Helmholtz equation :                      (d2/dx2)u + (d2/dy2)u - alpha u = f using Jacobi iterative method.  COMMENTS:          OpenMP version 1: two parallel regions with one parallel loop each, the naive approach.                       Directives are used in this code to achieve paralleism.                      All do loops are parallized with default 'static' scheduling.  REFERENCES:        http://www.rz.rwth-aachen.de/computing/hpc/prog/par/openmp/jacobi.html  BASIC PRAGMAS:     parallel for  USAGE:             ./c_jacobi01.par 5000 5000 0.8 1.0 1000  INPUT:             n - grid dimension in x direction                     m - grid dimension in y direction                     alpha - Helmholtz constant (always greater than 0.0)                     tol   - error tolerance for iterative solver                     relax - Successice over relaxation parameter                     mits  - Maximum iterations for iterative solver  OUTPUT:            Residual and error                      u(n,m) - Dependent variable (solutions)                     f(n,m) - Right hand side function   FILE FORMATS:      -  RESTRICTIONS:      -  REVISION HISTORY:**************************************************************************/#include <stdio.h>#include <math.h>#include <stdlib.h>#include "OmpSCR.h"#define U(i,j) u[(i)*n+(j)]#define F(i,j) f[(i)*n+(j)]#define NUM_ARGS  6#define NUM_TIMERS 1int n, m, mits;double tol, relax, alpha;void jacobi (int n, int m, double dx, double dy,              double alpha, double omega,              double *u, double *f,              double tol, int maxit );/******************************************************* Initializes data * Assumes exact solution is u(x,y) = (1-x^2)*(1-y^2)*******************************************************/void initialize(                  int n,                    int m,                double alpha,                double *dx,                double *dy,                double *u,                double *f){  int i,j,xx,yy;  *dx = 2.0 / (n-1);  *dy = 2.0 / (m-1);  /* Initilize initial condition and RHS */  for (j=0; j<m; j++){    for (i=0; i<n; i++){      xx = -1.0 + *dx * (i-1);      yy = -1.0 + *dy * (j-1);      U(j,i) = 0.0;      F(j,i) = -alpha * (1.0 - xx*xx) * (1.0 - yy*yy)                - 2.0 * (1.0 - xx*xx) - 2.0 * (1.0 - yy*yy);    }  }      }/************************************************************* Checks error between numerical and exact solution *************************************************************/void error_check(                 int n,                 int m,                 double alpha,                 double dx,                 double dy,                 double *u,                 double *f){  int i,j;  double xx, yy, temp, error;  dx = 2.0 / (n-1);  dy = 2.0 / (n-2);  error = 0.0;  for (j=0; j<m; j++){    for (i=0; i<n; i++){      xx = -1.0 + dx * (i-1);      yy = -1.0 + dy * (j-1);      temp = U(j,i) - (1.0 - xx*xx) * (1.0 - yy*yy);      error += temp*temp;    }  } error = sqrt(error)/(n*m);  printf("Solution Error : %g\n", error);}int main(int argc, char **argv){    double *u, *f, dx, dy;    double dt, mflops;    int NUMTHREADS;    char *PARAM_NAMES[NUM_ARGS] = {"Grid dimension: X dir =", "Grid dimension: Y dir =", "Helmhotlz constant =",                                    "Successive over-relaxation parameter =",                                    "error tolerance for iterative solver =", "Maximum iterations for solver ="};     char *TIMERS_NAMES[NUM_TIMERS] = {"Total_time"};    char *DEFAULT_VALUES[NUM_ARGS] = {"5000", "5000", "0.8", "1.0", "1e-7", "1000"};   NUMTHREADS = omp_get_max_threads();   OSCR_init (NUMTHREADS, "Jacobi Solver v1", "Use 'jacobi01' <n> <m> <alpha> <relax> <tol> <mits>", NUM_ARGS,                PARAM_NAMES, DEFAULT_VALUES , NUM_TIMERS, NUM_TIMERS, TIMERS_NAMES,                argc, argv);    n = OSCR_getarg_int(1);    m = OSCR_getarg_int(2);    alpha = OSCR_getarg_double(3);    relax = OSCR_getarg_double(4);    tol = OSCR_getarg_double(5);    mits = OSCR_getarg_int(6);    printf("-> %d, %d, %g, %g, %g, %d\n",           n, m, alpha, relax, tol, mits);        u = (double *) OSCR_malloc(n*m*sizeof(double));    f = (double *) OSCR_malloc(n*m*sizeof(double));    /* arrays are allocated and initialzed */    initialize(n, m, alpha, &dx, &dy, u, f);        /* Solve Helmholtz eqiation */    OSCR_timer_start(0);    jacobi(n, m, dx, dy, alpha, relax, u,f, tol, mits);    OSCR_timer_stop(0);    dt = OSCR_timer_read(0);    printf(" elapsed time : %12.6f\n", dt);    mflops = (0.000001*mits*(m-2)*(n-2)*13) / dt;    printf(" MFlops       : %12.6g (%d, %d, %d, %g)\n",mflops, mits, m, n, dt);    error_check(n, m, alpha, dx, dy, u, f);       OSCR_report(1, TIMERS_NAMES);       return 0;}/*       subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)******************************************************************* Subroutine HelmholtzJ* Solves poisson equation on rectangular grid assuming : * (1) Uniform discretization in each direction, and * (2) Dirichlect boundary conditions * * Jacobi method is used in this routine ** Input : n,m   Number of grid points in the X/Y directions *         dx,dy Grid spacing in the X/Y directions *         alpha Helmholtz eqn. coefficient *         omega Relaxation factor *         f(n,m) Right hand side function *         u(n,m) Dependent variable/Solution*         tol    Tolerance for iterative solver *         maxit  Maximum number of iterations ** Output : u(n,m) - Solution ******************************************************************/void jacobi ( const int n, const int m, double dx, double dy, double alpha, 	double omega, double *u, double *f, double tol, int maxit ){  int i,j,k;  double error, resid, ax, ay, b;  double *uold;  /* wegen Array-Kompatibilitaet, werden die Zeilen und Spalten (im Kopf)	 getauscht, zB uold[spalten_num][zeilen_num]; bzw. wir tuen so, als ob wir das	 gespiegelte Problem loesen wollen */  uold = (double *)OSCR_malloc(sizeof(double) * n *m);  ax = 1.0/(dx * dx); /* X-direction coef */  ay = 1.0/(dy*dy); /* Y_direction coef */  b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha; /* Central coeff */  error = 10.0 * tol;  k = 1;  while (k <= maxit && error > tol) {	error = 0.0;	/* copy new solution into old */#pragma omp parallel for private(i)    for (j=0; j<m; j++)	  for (i=0; i<n; i++)		uold[i + m*j] = u[i + m*j];	/* compute stencil, residual and update */#pragma omp parallel for reduction(+:error) private(i,resid)	for (j=1; j<m-1; j++)	  for (i=1; i<n-1; i++){		resid =(				ax * (uold[i-1 + m*j] + uold[i+1 + m*j])				+ ay * (uold[i + m*(j-1)] + uold[i + m*(j+1)])				+ b * uold[i + m*j] - f[i + m*j]			   ) / b;				/* update solution */		u[i + m*j] = uold[i + m*j] - omega * resid;		/* accumulate residual error */		error =error + resid*resid;	  }	/* error check */	k++;    error = sqrt(error) /(n*m);  } /* while */  printf("Total Number of Iterations %d\n", k);  printf("Residual                   %.15f\n\n", error);  free(uold);} 	

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美经典三级视频一区二区三区| 亚洲精品日韩综合观看成人91| 国产成人午夜精品影院观看视频| 亚洲欧美视频在线观看视频| 欧美一级片在线看| 不卡高清视频专区| 毛片基地黄久久久久久天堂| 国产精品久久久久aaaa樱花 | 国产亚洲欧美色| 欧美日韩国产另类一区| 丁香亚洲综合激情啪啪综合| 天堂精品中文字幕在线| 一区二区三区色| 床上的激情91.| 美女视频网站久久| 香蕉加勒比综合久久| 亚洲欧美怡红院| 久久综合久久综合久久综合| 欧美三级电影在线看| 9i在线看片成人免费| 国产精品一区二区三区乱码| 日韩电影在线一区二区三区| 亚洲一区二区三区四区的| 中文字幕一区三区| 国产日本欧洲亚洲| 久久蜜桃av一区精品变态类天堂| 91精品国产欧美日韩| 欧美日韩在线精品一区二区三区激情| 大美女一区二区三区| 国产激情视频一区二区在线观看| 久久99深爱久久99精品| 欧美aaaaaa午夜精品| 香蕉久久夜色精品国产使用方法| 亚洲国产日韩一区二区| 一区二区在线看| 亚洲精品乱码久久久久久黑人 | 欧美成人aa大片| 欧美亚洲国产一区二区三区| jizz一区二区| 99久久精品久久久久久清纯| 99久久精品免费看国产| 色综合色狠狠天天综合色| 欧美xxxxx裸体时装秀| 麻豆精品视频在线观看免费| 免费黄网站欧美| 蜜桃av一区二区三区电影| 麻豆精品在线播放| 黄色日韩网站视频| 国产精品99久久久久久久女警 | 成人免费视频国产在线观看| 国产激情一区二区三区| 成人精品国产福利| 91蜜桃免费观看视频| 91久久线看在观草草青青| 91搞黄在线观看| 欧美欧美午夜aⅴ在线观看| 在线不卡一区二区| 日韩欧美国产不卡| 国产亚洲一区二区三区| 国产精品少妇自拍| 一区二区高清免费观看影视大全| 亚洲国产精品一区二区www | 丁香婷婷综合激情五月色| www.亚洲精品| 精品视频在线免费观看| 7777精品伊人久久久大香线蕉超级流畅| 欧美一区国产二区| 国产女同互慰高潮91漫画| 亚洲色图另类专区| 亚洲国产sm捆绑调教视频| 免费精品99久久国产综合精品| 91福利国产成人精品照片| 视频在线观看一区| 国产成人午夜视频| 欧美亚洲综合一区| 欧美精品一区二区三区四区| 国产精品三级av在线播放| 亚洲福利视频一区| 裸体健美xxxx欧美裸体表演| 波多野结衣中文一区| 欧美日韩亚洲丝袜制服| 日韩欧美一区二区不卡| 亚洲欧洲另类国产综合| 日韩电影一区二区三区四区| 国产乱码精品一区二区三区av| 一本大道综合伊人精品热热| 欧美电视剧免费全集观看| 综合久久给合久久狠狠狠97色| 日韩精品乱码av一区二区| 波多野结衣亚洲| 日韩欧美国产成人一区二区| 亚洲视频一二三区| 激情小说亚洲一区| 欧美日韩在线观看一区二区| 欧美韩国日本综合| 日本成人在线不卡视频| 成年人国产精品| 欧美一区二区不卡视频| 亚洲三级久久久| 国产激情一区二区三区| 在线观看视频91| 日本一区二区电影| 美日韩一区二区| 在线亚洲高清视频| 国产精品天美传媒| 精品一区二区三区免费播放| 欧美性xxxxxxxx| 五月天视频一区| 午夜精品福利在线| 色哟哟一区二区在线观看| 久久久久国产精品麻豆| 亚洲成av人片观看| 99精品久久只有精品| 精品成a人在线观看| 婷婷综合在线观看| 在线免费精品视频| 亚洲美女视频在线观看| 成人爽a毛片一区二区免费| 欧美成人精品福利| 蜜桃久久av一区| 51精品秘密在线观看| 亚洲综合色视频| caoporm超碰国产精品| 国产欧美日韩综合| 国产精品一区专区| 久久嫩草精品久久久精品一| 七七婷婷婷婷精品国产| 色噜噜偷拍精品综合在线| 国产精品乱码一区二三区小蝌蚪| 国产一区二区视频在线| 欧美一级二级三级乱码| 天天av天天翘天天综合网色鬼国产 | 中文无字幕一区二区三区| 黑人精品欧美一区二区蜜桃| 日韩欧美在线一区二区三区| 日韩专区欧美专区| 制服丝袜亚洲色图| 日本特黄久久久高潮| 91精品国产综合久久久蜜臀粉嫩| 亚洲成a人v欧美综合天堂下载| 欧洲国内综合视频| 亚洲大片一区二区三区| 欧美日韩成人一区| 中文字幕一区二区三区在线不卡| 国产aⅴ综合色| 国产精品福利电影一区二区三区四区| 粉嫩av一区二区三区在线播放| 中文在线一区二区| 97se狠狠狠综合亚洲狠狠| 亚洲图片另类小说| 欧美唯美清纯偷拍| 日本亚洲电影天堂| wwww国产精品欧美| 粉嫩aⅴ一区二区三区四区| 国产精品美女久久福利网站| 91在线视频免费观看| 亚洲综合色丁香婷婷六月图片| 欧洲另类一二三四区| 亚洲一级在线观看| 91精品蜜臀在线一区尤物| 久久草av在线| 国产精品三级电影| 欧美日韩中文国产| 精品亚洲国内自在自线福利| 欧美另类z0zxhd电影| 捆绑变态av一区二区三区| 久久久久久久一区| 91欧美一区二区| 午夜精品一区二区三区三上悠亚| 精品久久国产字幕高潮| 99国产精品久| 天天影视色香欲综合网老头| 精品国产免费久久| 91年精品国产| 美女视频免费一区| 国产精品美女一区二区在线观看| 在线观看视频欧美| 国产美女精品一区二区三区| 亚洲美腿欧美偷拍| 精品国产1区二区| 色婷婷综合久色| 国产一区欧美日韩| 亚洲一本大道在线| 国产亚洲一区字幕| 欧美成人三级在线| 污片在线观看一区二区| 精品国产免费人成在线观看| 99久久777色| 免费一区二区视频| 亚洲欧美综合色| 日韩精品在线一区二区| 色偷偷久久一区二区三区| 国产麻豆视频一区二区| 亚洲午夜精品久久久久久久久| 久久久噜噜噜久久中文字幕色伊伊 | 亚洲午夜电影网| 国产婷婷色一区二区三区| 欧美久久一区二区| 色欧美日韩亚洲| 成人深夜在线观看|