亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? nl-elast-neo-hookean.edp

?? FreeFem++可以生成高質(zhì)量的有限元網(wǎng)格。可以用于流體力學
?? EDP
字號:
//  See comment on  documentation chapter 9, //   section:  Compressible Neo-Hookean Materials: Computational So- //    lutions// -----------  Author  Alex Sadovsky (mail:sashas@gmail.com)// ================================================================//  non linear elasticity model: a neo-Hookean material of the//  Simo-Pister type, with the strain energy density function given//  by:////  W = (mu / 2) * ( I1 - tr(I1) - 2 ln(J) ), where we have used //  the notation//  F = deformation gradient,//  J = det(F),//  C = F^T F,//  I1 = tr(C),//  I = the identity tensor of rank 2//  For details, see formula (12) in the following paper://  ====================================================================//  Horgan, C; Saccomandi, G;//  ``Constitutive Models for Compressible Nonlinearly Elastic//  Materials with Limiting Chain Extensibility,''//   Journal of Elasticity, Volume 77, Number 2, November 2004, pp. 123-138(16)//  ====================================================================//  For an exposition of nonlinear elasticity, see the book //  "Nonlinear Elastic Deformations" by R. Ogden.  Other good sources //  are A.J.M. Spencer's "Continuum Mechanics" and P. Chadwick's //  book with the same title.  For the FEM formulation, see //  Prof. Alan Bower's course notes, posted at://  http://www.engin.brown.edu/courses/en222/Notes/FEMfinitestrain/FEMfinitestrain.htm//  ////  The domain of the following problem is a circular or //  elliptical disc with a concentric elliptical hole.  Zero//  displacements are prescribed on the outer boundary; the //  dead stress load Pa, on the inner boundary.//  ====================================================================//  Macros for the gradient of a vector field (u1, u2)macro grad11(u1, u2) (dx(u1)) //macro grad21(u1, u2) (dy(u1)) //macro grad12(u1, u2) (dx(u2)) //macro grad22(u1, u2) (dy(u2)) ////  Macros for the deformation gradientmacro F11(u1, u2) (1.0 + grad11(u1,u2)) //macro F12(u1, u2) (0.0 + grad12(u1,u2)) //macro F21(u1, u2) (0.0 + grad21(u1,u2)) //macro F22(u1, u2) (1.0 + grad22(u1,u2)) ////  Macros for the incremental deformation gradientmacro dF11(varu1, varu2) (grad11(varu1, varu2)) //macro dF12(varu1, varu2) (grad12(varu1, varu2)) //macro dF21(varu1, varu2) (grad21(varu1, varu2)) //macro dF22(varu1, varu2) (grad22(varu1, varu2)) ////  Macro for the determinant of the deformation gradientmacro J(u1, u2) (F11(u1, u2)*F22(u1, u2) - F12(u1, u2)*F21(u1, u2)) ////  Macros for the inverse of the deformation gradientmacro Finv11 (u1, u2) (F22(u1, u2) / J(u1, u2)) //macro Finv22 (u1, u2) (F11(u1, u2) / J(u1, u2)) //macro Finv12 (u1, u2) (-F12(u1, u2) / J(u1, u2)) //macro Finv21 (u1, u2) (-F21(u1, u2) / J(u1, u2)) ////  Macros for the square of the inverse of the deformation gradientmacro FFinv11 (u1, u2) (Finv11(u1, u2)^2 + Finv12(u1, u2)*Finv21(u1, u2)) //macro FFinv12 (u1, u2) (Finv12(u1, u2)*(Finv11(u1, u2) + Finv22(u1, u2))) //macro FFinv21 (u1, u2) (Finv21(u1, u2)*(Finv11(u1, u2) + Finv22(u1, u2))) //macro FFinv22 (u1, u2) (Finv12(u1, u2)*Finv21(u1, u2) + Finv22(u1, u2)^2) ////  Macros for the inverse of the transpose of the deformation gradientmacro FinvT11(u1, u2) (Finv11(u1, u2)) //macro FinvT12(u1, u2) (Finv21(u1, u2)) //macro FinvT21(u1, u2) (Finv12(u1, u2)) //macro FinvT22(u1, u2) (Finv22(u1, u2)) ////  The left Cauchy-Green strain tensor macro B11(u1, u2)(F11(u1, u2)^2 + F12(u1, u2)^2)//macro B12(u1, u2)(F11(u1, u2)*F21(u1, u2) + F12(u1, u2)*F22(u1, u2))//macro B21(u1, u2)(F11(u1, u2)*F21(u1, u2) + F12(u1, u2)*F22(u1, u2))//macro B22(u1, u2)(F21(u1, u2)^2 + F22(u1, u2)^2)////===========================================================================//  The macros for the auxiliary tensors (D0, D1, D2, ...): Begin////  The tensor quantity D0 = F_{n} (\delta F_{n+1})^Tmacro d0Aux11 (u1, u2, varu1, varu2) (dF11(varu1, varu2) * F11(u1, u2) + dF12(varu1, varu2) * F12(u1, u2))//macro d0Aux12 (u1, u2, varu1, varu2) (dF21(varu1, varu2) * F11(u1, u2) + dF22(varu1, varu2) * F12(u1, u2))//macro d0Aux21 (u1, u2, varu1, varu2) (dF11(varu1, varu2) * F21(u1, u2) + dF12(varu1, varu2) * F22(u1, u2))//macro d0Aux22 (u1, u2, varu1, varu2) (dF21(varu1, varu2) * F21(u1, u2) + dF22(varu1, varu2) * F22(u1, u2))//////  The tensor quantity D1 = D0 + D0^Tmacro d1Aux11 (u1, u2, varu1, varu2) (2.0 * d0Aux11 (u1, u2, varu1, varu2) )//macro d1Aux12 (u1, u2, varu1, varu2) (d0Aux12 (u1, u2, varu1, varu2) + d0Aux21 (u1, u2, varu1, varu2) )//macro d1Aux21 (u1, u2, varu1, varu2) (d1Aux12 (u1, u2, varu1, varu2) )//macro d1Aux22 (u1, u2, varu1, varu2) (2.0 * d0Aux22 (u1, u2, varu1, varu2) )//////  The tensor quantity D2 = F^{-T}_{n} dF_{n+1}macro d2Aux11 (u1, u2, varu1, varu2) (dF11(varu1, varu2) * FinvT11(u1, u2) + dF21(varu1, varu2) * FinvT12(u1, u2))//macro d2Aux12 (u1, u2, varu1, varu2) (dF12(varu1, varu2) * FinvT11(u1, u2) + dF22(varu1, varu2) * FinvT12(u1, u2))//macro d2Aux21 (u1, u2, varu1, varu2) (dF11(varu1, varu2) * FinvT21(u1, u2) + dF21(varu1, varu2) * FinvT22(u1, u2))//macro d2Aux22 (u1, u2, varu1, varu2) (dF12(varu1, varu2) * FinvT21(u1, u2) + dF22(varu1, varu2) * FinvT22(u1, u2))//////  The tensor quantity D3 = F^{-2}_{n} dF_{n+1}macro d3Aux11 (u1, u2, varu1, varu2, w1, w2) (dF11(varu1, varu2) *FFinv11(u1, u2) *grad11(w1, w2) + dF21(varu1, varu2) *FFinv12(u1, u2)*grad11(w1, w2) + dF11(varu1, varu2) *FFinv21(u1, u2) *grad12(w1, w2) + dF21(varu1, varu2) *FFinv22(u1, u2) *grad12(w1, w2))//macro d3Aux12 (u1, u2, varu1, varu2, w1, w2) (dF12(varu1, varu2) *FFinv11(u1, u2) *grad11(w1, w2) + dF22(varu1, varu2) *FFinv12(u1, u2)*grad11(w1, w2) + dF12(varu1, varu2) *FFinv21(u1, u2) *grad12(w1, w2) + dF22(varu1, varu2) *FFinv22(u1, u2) *grad12(w1, w2))//macro d3Aux21 (u1, u2, varu1, varu2, w1, w2) (dF11(varu1, varu2) *FFinv11(u1, u2) *grad21(w1, w2) + dF21(varu1, varu2) *FFinv12(u1, u2)*grad21(w1, w2) + dF11(varu1, varu2) *FFinv21(u1, u2) *grad22(w1, w2) + dF21(varu1, varu2) *FFinv22(u1, u2) *grad22(w1, w2))//macro d3Aux22 (u1, u2, varu1, varu2, w1, w2) (dF12(varu1, varu2) *FFinv11(u1, u2) *grad21(w1, w2) + dF22(varu1, varu2) *FFinv12(u1, u2)*grad21(w1, w2) + dF12(varu1, varu2) *FFinv21(u1, u2) *grad22(w1, w2) + dF22(varu1, varu2) *FFinv22(u1, u2) *grad22(w1, w2))//////  The tensor quantity D4 = (grad w) * Finvmacro d4Aux11 (w1, w2, u1, u2) (Finv11(u1, u2)*grad11(w1, w2) + Finv21(u1, u2)*grad12(w1, w2))//macro d4Aux12 (w1, w2, u1, u2) (Finv12(u1, u2)*grad11(w1, w2) + Finv22(u1, u2)*grad12(w1, w2))//macro d4Aux21 (w1, w2, u1, u2) (Finv11(u1, u2)*grad21(w1, w2) + Finv21(u1, u2)*grad22(w1, w2))//macro d4Aux22 (w1, w2, u1, u2) (Finv12(u1, u2)*grad21(w1, w2) + Finv22(u1, u2)*grad22(w1, w2))////  The macros for the auxiliary tensors (D0, D1, D2, ...): End//----------------------------------------------------------------------------//===========================================================================//  The macros for the various stress measures: BEGIN//  The Kirchhoff stress tensormacro StressK11(u1, u2)(mu * (B11(u1, u2) - 1.0))////  The Kirchhoff stress tensormacro StressK12(u1, u2)(mu * B12(u1, u2) )////  The Kirchhoff stress tensormacro StressK21(u1, u2)(mu * B21(u1, u2) )////  The Kirchhoff stress tensormacro StressK22(u1, u2)(mu * (B22(u1, u2) - 1.0))////  The tangent Kirchhoff stress tensormacro TanK11(u1, u2, varu1, varu2)(mu * d1Aux11(u1, u2, varu1, varu2) )//macro TanK12(u1, u2, varu1, varu2)(mu * d1Aux12(u1, u2, varu1, varu2) )//macro TanK21(u1, u2, varu1, varu2)(mu * d1Aux21(u1, u2, varu1, varu2) )//macro TanK22(u1, u2, varu1, varu2)(mu * d1Aux22(u1, u2, varu1, varu2) )////  The macros for the stress tensor components: END//----------------------------------------------------------------------------// END OF MACROS// ----------------------------------------------------------------------------// ************************************************// THE (BIO)MECHANICAL PARAMETERS: Begin//  Elastic coefficientsreal mu = 5.e2; //  kg/cm^2real D = 1.e3; //  (1 / compressibility)//  Stress loadsreal Pa = -3.e2;// THE (BIO)MECHANICAL PARAMETERS: End// ************************************************// ************************************************// THE COMPUTATIONAL PARAMETERS: Begin//  The wound radiusreal InnerRadius = 1.e0;//  The outer (truncated) radiusreal OuterRadius = 4.e0;//  Tolerance (L^2)real tol = 1.e-4;//  Extension of the inner ellipse ((major axis) - (minor axis))real InnerEllipseExtension = 1.e0;// THE COMPUTATIONAL PARAMETERS: End// ************************************************int m = 40, n = 20;border InnerEdge(t = 0, 2.0*pi) {x = (1.0 + InnerEllipseExtension) * InnerRadius * cos(t); y = InnerRadius * sin(t); label = 1;}border OuterEdge(t = 0, 2.0*pi) {x = (1.0 + 0.0 * InnerEllipseExtension) * OuterRadius * cos(t); y = OuterRadius * sin(t); label = 2;}mesh Th = buildmesh(InnerEdge(-m) + OuterEdge(n));int bottom=1, right=2,upper=3,left=4;plot(Th);fespace Wh(Th,P1dc);fespace Vh(Th,[P1,P1]);fespace Sh(Th,P1);Vh [w1, w2], [u1n,u2n], [varu1, varu2];varf vfMass1D(p,q) = int2d(Th)(p*q);matrix Mass1D = vfMass1D(Sh,Sh,solver=CG);Sh p, ppp;p[] = 1;ppp[] = Mass1D * p[];real DomainMass = ppp[].sum;cout << "****************************************" << endl;cout << "DomainMass = " << DomainMass << endl;cout << "****************************************" << endl;varf vmass([u1,u2],[v1,v2],solver=CG) =  int2d(Th)( (u1*v1 + u2*v2) / DomainMass );matrix Mass = vmass(Vh,Vh);matrix Id = vmass(Vh,Vh);//  Define the standard Euclidean basis functionsVh [ehat1x, ehat1y], [ehat2x, ehat2y]; [ehat1x, ehat1y] = [1.0, 0.0];[ehat2x, ehat2y] = [0.0, 1.0]; // The individual elements of the total 1st Piola-Kirchoff stressVh [auxVec1, auxVec2];// Sh Stress1PK11, Stress1PK12, Stress1PK21, Stress1PK22;Sh StrK11, StrK12, StrK21, StrK22;Vh [ef1, ef2];real ContParam, dContParam;problem neoHookeanInc([varu1, varu2], [w1, w2], solver = LU)=int2d(Th, qforder=1)( // BILINEAR part-(  StressK11 (u1n, u2n) * d3Aux11(u1n, u2n, varu1, varu2, w1, w2) + StressK12 (u1n, u2n) * d3Aux12(u1n, u2n, varu1, varu2, w1, w2) + StressK21 (u1n, u2n) * d3Aux21(u1n, u2n, varu1, varu2, w1, w2) + StressK22 (u1n, u2n) * d3Aux22(u1n, u2n, varu1, varu2, w1, w2) )+ TanK11 (u1n, u2n, varu1, varu2) * d4Aux11(w1, w2, u1n, u2n) + TanK12 (u1n, u2n, varu1, varu2) * d4Aux12(w1, w2, u1n, u2n)+ TanK21 (u1n, u2n, varu1, varu2) * d4Aux21(w1, w2, u1n, u2n) + TanK22 (u1n, u2n, varu1, varu2) * d4Aux22(w1, w2, u1n, u2n) )+ int2d(Th, qforder=1)( // LINEAR part  StressK11 (u1n, u2n) * d4Aux11(w1, w2, u1n, u2n) + StressK12 (u1n, u2n) * d4Aux12(w1, w2, u1n, u2n) + StressK21 (u1n, u2n) * d4Aux21(w1, w2, u1n, u2n) + StressK22 (u1n, u2n) * d4Aux22(w1, w2, u1n, u2n) )//  Choose one of the following two boundary conditions involving Pa:// Load vectors normal to the boundary: - int1d(Th,1)( Pa * (w1*N.x + w2*N.y) ) //  Load vectors tangential to the boundary:// - int1d(Th,1)( Pa * (w1*N.y - w2*N.x) )    + on(2, varu1 = 0, varu2 = 0);;// The Lagrange-Green strain tensor,  E = (1/2)(C - I)// Wh E111, E12, E121, E12;//  Auxiliary variablesmatrix auxMat;// Newton's method// ---------------Sh u1,u2;ContParam = 0.0;dContParam = 0.01;//  Initialization:[varu1,varu2] = [0.0, 0.0]; [u1n, u2n] = [0.0, 0.0];real res = 2.0 * tol;real eforceres;int loopcount = 0;int loopmax = 45;//  Iteration:while (loopcount <= loopmax && res >= tol) {  loopcount ++;  ////////////////////////////////////////////////////////////  cout << "Loop " << loopcount << endl;//  plot([u1n,u2n], wait=0, cmm="displacement:" );/*  cout << "TESTING: Begin" << endl;  cout << "dFStress2PK11 = " << dFStress2PK11 (u1n, u2n, varu1, varu2) << endl;   cout << "TESTING: End" << endl;  cout << "B11 = " << B11(u1n, u2n) << endl;  cout << "B12 = " << B12(u1n, u2n) << endl;  cout << "B21 = " << B21(u1n, u2n) << endl;  cout << "B22 = " << B22(u1n, u2n) << endl << endl;  cout << "J = " << J(u1n, u2n) << endl << endl;  StrK11 = StressK11(u1n, u2n);  StrK12 = StressK12(u1n, u2n);    StrK21 = StressK21(u1n, u2n);  StrK22 = StressK22(u1n, u2n);  cout << "StressK11 = " << StrK11 << endl;  cout << "StressK12 = " << StrK12 << endl;  cout << "StressK21 = " << StrK21 << endl;  cout << "StressK22 = " << StrK22 << endl;*/  neoHookeanInc;  //  compute [varu1,varu2] = (D^2 J(u1n))^{-1}(D  J(u1n))//  cout << "This marker reached" << endl;  u1 = varu1;  u2 = varu2;      w1[]   = Mass*varu1[];  res = sqrt(w1[]' * varu1[]); //  norme  L^2 of [varu1, varu2]//  cout << " u1 min =" <<u1[].min << ", u1 max= " << u1[].max << endl;//  cout << " u2 min =" << u2[].min << ", u2 max= " << u2[].max << endl;//  plot([varu1, varu2], wait=1, cmm=" varu1, varu2 " );  u1n[] += varu1[];   cout << " L^2 residual = " << res << endl;  plot([u1n,u2n], wait=0, cmm="displacement:" );//  Calculate the elastic force residue  /*  if (res < tol)  {	loopcount = 1;	res = 1.0 + tol;	ContParam += dContParam;	cout << "ContParam = " << ContParam << endl;  } */}// plot([u1n,u2n], wait=1, cmm="displacement:" );// plot([u1n,u2n],wait=1);plot(Th, wait=2, ps="ref-config.eps");mesh Th1 = movemesh(Th, [x+u1n, y+u2n]);plot(Th1, wait=2, ps="def-config-neo-Hookean.eps");plot([u1n,u2n], wait=0, ps="displacement-neo-Hookean.eps" );

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色综合天天综合在线视频| 一区二区三区中文字幕| 久久99热国产| 久久综合精品国产一区二区三区 | 国产精品视频一区二区三区不卡| 精品亚洲国内自在自线福利| 久久久久久久久蜜桃| 成人黄页毛片网站| 亚洲视频一区二区在线| 在线观看欧美日本| 日本在线不卡视频一二三区| 精品久久久网站| 成人亚洲精品久久久久软件| 亚洲精品国产无套在线观| 欧美日韩情趣电影| 国内精品久久久久影院一蜜桃| 国产精品久久久爽爽爽麻豆色哟哟| 色综合久久久久综合体| 婷婷开心久久网| 国产亚洲欧美日韩日本| 9l国产精品久久久久麻豆| 图片区日韩欧美亚洲| 久久久三级国产网站| 日本韩国欧美一区| 蓝色福利精品导航| 日韩码欧中文字| 欧美成人一级视频| 色偷偷一区二区三区| 久久精品久久精品| 亚洲视频免费看| 精品国产乱码久久久久久牛牛| 国产精品一区三区| 亚洲动漫第一页| 久久精品一区四区| 欧美日韩一区成人| 99麻豆久久久国产精品免费 | 日韩av二区在线播放| 国产精品色呦呦| 欧美一级生活片| 91在线观看一区二区| 国产一区二区三区| 亚洲成av人片观看| 中文字幕一区二区在线观看| 欧美一卡二卡三卡四卡| 91麻豆自制传媒国产之光| 日本成人在线视频网站| 亚洲欧美日韩久久| 久久精品在线观看| 日韩视频免费观看高清完整版在线观看 | 国产精品 日产精品 欧美精品| 亚洲一区影音先锋| 日韩一区在线播放| 国产女人18毛片水真多成人如厕| 色88888久久久久久影院按摩 | 亚洲欧洲一区二区在线播放| 亚洲v中文字幕| 国产精品三级在线观看| 欧美成人高清电影在线| 欧美久久久一区| 91麻豆国产福利精品| 国产激情一区二区三区| 久久久国产精品麻豆| 日本高清不卡一区| 狠狠色综合播放一区二区| 亚洲精品大片www| 中文字幕一区二区三区av| 欧美精品一区视频| 91精品在线一区二区| 欧美日韩mp4| 91高清在线观看| 欧美伊人久久大香线蕉综合69| 97久久精品人人做人人爽| 成人看片黄a免费看在线| 国产精品一区二区在线观看不卡| 久久精品国产99国产精品| 久久se这里有精品| 久久av中文字幕片| 激情深爱一区二区| 国产精品综合视频| 顶级嫩模精品视频在线看| 成人性生交大片免费看在线播放 | 一区二区三区精品视频在线| 18成人在线视频| 亚洲摸摸操操av| 夜夜亚洲天天久久| 视频一区在线播放| 蜜臀国产一区二区三区在线播放| 蜜桃视频第一区免费观看| 久久99国产精品久久99| 国产精品一区二区x88av| 成人精品视频一区二区三区尤物| 成人午夜av在线| 91丨九色丨黑人外教| 欧美日韩精品欧美日韩精品一| 欧美日韩高清一区二区三区| 欧美一级一区二区| 精品国产91乱码一区二区三区 | 91麻豆精品国产91久久久久久久久| 欧美精品1区2区3区| 精品动漫一区二区三区在线观看| 中文字幕国产精品一区二区| 一区二区三区欧美亚洲| 午夜欧美视频在线观看| 国产最新精品免费| 99精品欧美一区二区蜜桃免费| 91久久精品日日躁夜夜躁欧美| 欧美精品久久一区| 国产片一区二区| 一区二区视频免费在线观看| 日本中文在线一区| 不卡视频免费播放| 7777精品伊人久久久大香线蕉 | 精品日韩在线观看| 国产精品久久99| 日韩av中文在线观看| 国产精品一区久久久久| 在线观看av一区| 精品久久五月天| 一区二区三区精品久久久| 老司机精品视频一区二区三区| 成人在线视频一区| 欧美一激情一区二区三区| 国产精品福利一区| 精品一区二区三区在线观看国产| 91婷婷韩国欧美一区二区| 欧美一区二区三区婷婷月色| 国产精品久久久久久久久晋中 | 亚洲品质自拍视频| 男男视频亚洲欧美| 色婷婷国产精品| 国产亚洲欧美激情| 日av在线不卡| 欧美主播一区二区三区| 日本一区二区三区dvd视频在线| 视频一区在线播放| 色婷婷综合在线| 国产欧美综合在线| 麻豆91小视频| 欧美日本一区二区| 亚洲欧美乱综合| 国产99精品在线观看| 日韩欧美中文字幕一区| 亚洲国产精品尤物yw在线观看| 成人免费高清视频在线观看| 久久午夜免费电影| 另类的小说在线视频另类成人小视频在线| 97aⅴ精品视频一二三区| 久久精品男人的天堂| 蜜臀精品一区二区三区在线观看 | 国产精品久久网站| 国产乱人伦偷精品视频不卡| 91精品国产欧美一区二区成人| 亚洲午夜精品17c| 欧美主播一区二区三区| 亚洲精品国产品国语在线app| proumb性欧美在线观看| 国产婷婷色一区二区三区在线| 激情综合色综合久久综合| 91麻豆精品国产91久久久资源速度 | 国产女主播一区| 狠狠狠色丁香婷婷综合激情| 精品欧美一区二区在线观看| 日韩精品电影一区亚洲| 欧美日韩国产系列| 午夜影院久久久| 欧美一区二区精品在线| 男男视频亚洲欧美| 欧美不卡视频一区| 麻豆精品国产传媒mv男同| 欧美一区二区视频在线观看2022| 日韩国产欧美在线视频| 日韩一区二区在线观看视频 | 亚洲精品日产精品乱码不卡| 91免费国产在线观看| 亚洲日本青草视频在线怡红院| 成人av免费观看| 亚洲精品乱码久久久久久日本蜜臀| 91亚洲精品乱码久久久久久蜜桃| 成人欧美一区二区三区| 色婷婷av一区二区三区之一色屋| 一区二区三区欧美视频| 欧美日韩精品免费| 日韩精品一区第一页| 日韩欧美高清dvd碟片| 国产中文字幕一区| 中文一区二区在线观看| 91色porny蝌蚪| 亚洲成人精品一区二区| 日韩午夜激情电影| 成人午夜av电影| 亚洲午夜在线观看视频在线| 8v天堂国产在线一区二区| 国产在线播放一区三区四| 中文字幕欧美一区| 欧美日韩日日夜夜| 国产盗摄视频一区二区三区| 一个色在线综合| 欧美v日韩v国产v| 99re热视频这里只精品| 日韩在线a电影|